Enumeration of quarter-turn-symmetric alternating-sign matrices of odd order
Teoretičeskaâ i matematičeskaâ fizika, Tome 149 (2006) no. 3, pp. 395-408
Voir la notice de l'article provenant de la source Math-Net.Ru
Kuperberg showed that the partition function of the square-ice model related
to quarter-turn-symmetric alternating-sign matrices of even order is
the product of two similar factors. We propose a square-ice model whose states
are in bijection with the quarter-turn-symmetric alternating-sign matrices of
odd order and show that the partition function of this model can be written
similarly. In particular, this allows proving Robbins's conjectures related
to the enumeration of quarter-turn-symmetric alternating-sign matrices.
Keywords:
alternating-sign matrix, enumeration, square-ice model.
@article{TMF_2006_149_3_a6,
author = {A. V. Razumov and Yu. G. Stroganov},
title = {Enumeration of quarter-turn-symmetric alternating-sign matrices of odd order},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {395--408},
publisher = {mathdoc},
volume = {149},
number = {3},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2006_149_3_a6/}
}
TY - JOUR AU - A. V. Razumov AU - Yu. G. Stroganov TI - Enumeration of quarter-turn-symmetric alternating-sign matrices of odd order JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2006 SP - 395 EP - 408 VL - 149 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2006_149_3_a6/ LA - ru ID - TMF_2006_149_3_a6 ER -
A. V. Razumov; Yu. G. Stroganov. Enumeration of quarter-turn-symmetric alternating-sign matrices of odd order. Teoretičeskaâ i matematičeskaâ fizika, Tome 149 (2006) no. 3, pp. 395-408. http://geodesic.mathdoc.fr/item/TMF_2006_149_3_a6/