Enumeration of quarter-turn-symmetric alternating-sign matrices of odd order
Teoretičeskaâ i matematičeskaâ fizika, Tome 149 (2006) no. 3, pp. 395-408 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Kuperberg showed that the partition function of the square-ice model related to quarter-turn-symmetric alternating-sign matrices of even order is the product of two similar factors. We propose a square-ice model whose states are in bijection with the quarter-turn-symmetric alternating-sign matrices of odd order and show that the partition function of this model can be written similarly. In particular, this allows proving Robbins's conjectures related to the enumeration of quarter-turn-symmetric alternating-sign matrices.
Keywords: alternating-sign matrix, enumeration, square-ice model.
@article{TMF_2006_149_3_a6,
     author = {A. V. Razumov and Yu. G. Stroganov},
     title = {Enumeration of quarter-turn-symmetric alternating-sign matrices of odd order},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {395--408},
     year = {2006},
     volume = {149},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2006_149_3_a6/}
}
TY  - JOUR
AU  - A. V. Razumov
AU  - Yu. G. Stroganov
TI  - Enumeration of quarter-turn-symmetric alternating-sign matrices of odd order
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2006
SP  - 395
EP  - 408
VL  - 149
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2006_149_3_a6/
LA  - ru
ID  - TMF_2006_149_3_a6
ER  - 
%0 Journal Article
%A A. V. Razumov
%A Yu. G. Stroganov
%T Enumeration of quarter-turn-symmetric alternating-sign matrices of odd order
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2006
%P 395-408
%V 149
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2006_149_3_a6/
%G ru
%F TMF_2006_149_3_a6
A. V. Razumov; Yu. G. Stroganov. Enumeration of quarter-turn-symmetric alternating-sign matrices of odd order. Teoretičeskaâ i matematičeskaâ fizika, Tome 149 (2006) no. 3, pp. 395-408. http://geodesic.mathdoc.fr/item/TMF_2006_149_3_a6/

[1] W. H. Mills, D. P. Robbins, H. Rumsey, Invent. Math., 66 (1982), 73–87 ; J. Combin. Theory Ser. A, 34 (1983), 340–359 | DOI | MR | Zbl | DOI | MR | Zbl

[2] G. Kuperberg, Int. Math. Res. Notes, 1996:3 (1996), 139–150 ; math.CO/9712207 | DOI | MR | Zbl

[3] G. Kuperberg, Ann. Math., 156 (2002), 835–866 ; math.CO/0008184 | DOI | MR

[4] D. P. Robbins, Symmetry Classes of Alternating Sign Matrices, math.CO/0008045

[5] A. M. Razumov, Yu. G. Stroganov, TMF, 148:3 (2006), 357–386 ; math-ph/0504022 | DOI | MR | Zbl

[6] D. Zeilberger, New York J. Math., 2 (1996), 59–68 ; ; А. В. Разумов, Ю. Г. Строганов, ТМФ, 141 (2004), 323–347 ; math.CO/9606224math-ph/0312071 | MR | Zbl | DOI | MR | Zbl

[7] Yu. G. Stroganov, TMF, 146 (2006), 65–76 ; math-ph/0204042 | DOI | MR | Zbl

[8] S. Okada, J. Algebraic Combin., 23 (2006), 43–69 ; math.CO/0408234 | DOI | MR | Zbl