Soliton–skyrmion in the extended chiral group $E\chi$ including
Teoretičeskaâ i matematičeskaâ fizika, Tome 149 (2006) no. 3, pp. 386-394 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the extended chiral group $E\chi$ and investigate whether solitons–skyrmions can be formed by the chiral field with diquark parameters in the symplectic subgroup of $E\chi$. We find that isolated solitons {(}i.e., solitons in the gluonic vacuum{\rm)} can be stable in the chromomagnetic vacuum and their topological charge starts from $\pm4/3$.
Keywords: color chiral model, diquark, chiral anomaly.
@article{TMF_2006_149_3_a5,
     author = {V. Yu. Novozhilov and Yu. V. Novozhilov},
     title = {Soliton{\textendash}skyrmion in the~extended chiral group $E\chi$ including},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {386--394},
     year = {2006},
     volume = {149},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2006_149_3_a5/}
}
TY  - JOUR
AU  - V. Yu. Novozhilov
AU  - Yu. V. Novozhilov
TI  - Soliton–skyrmion in the extended chiral group $E\chi$ including
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2006
SP  - 386
EP  - 394
VL  - 149
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2006_149_3_a5/
LA  - ru
ID  - TMF_2006_149_3_a5
ER  - 
%0 Journal Article
%A V. Yu. Novozhilov
%A Yu. V. Novozhilov
%T Soliton–skyrmion in the extended chiral group $E\chi$ including
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2006
%P 386-394
%V 149
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2006_149_3_a5/
%G ru
%F TMF_2006_149_3_a5
V. Yu. Novozhilov; Yu. V. Novozhilov. Soliton–skyrmion in the extended chiral group $E\chi$ including. Teoretičeskaâ i matematičeskaâ fizika, Tome 149 (2006) no. 3, pp. 386-394. http://geodesic.mathdoc.fr/item/TMF_2006_149_3_a5/

[1] N. N. Bogolyubov, A. A. Logunov, I. T. Todorov, Osnovy aksiomaticheskogo podkhoda v kvantovoi teorii polya, Nauka, M., 1969 | MR | Zbl

[2] N. N. Bogolyubov, A. A. Logunov, A. I. Oksak, I. T. Todorov, Obschie printsipy kvantovoi teorii polya, Nauka, M., 1987 | MR | Zbl

[3] S. L. Adler, Phys. Rev., 177 (1969), 2426 | DOI

[4] V. G. Makhankov, Yu. P. Rybakov, V. I. Sanyuk, UFN, 162 (1992), 1 | DOI

[5] V. Novozhilov, Yu. Novozhilov, Phys. Lett. B, 522 (2001), 49 ; В. Ю. Новожилов, Ю. В. Новожилов, ТМФ, 131 (2002), 62 | DOI | Zbl | DOI | Zbl

[6] M. A. Shifman, A. I. Vainshtein, V. I. Zakharov, Nucl. Phys. B, 147 (1979), 385 | DOI

[7] Yu. Novozhilov, A. Pronko, D. Vassilevich, Phys. Lett. B, 343 (1995), 358 | DOI

[8] R. Ball, Phys. Lett. B, 227 (1989), 445 ; Yu. Novozhilov, A. Pronko, D. Vassilevich, Phys. Lett. B, 321 (1994), 425 | DOI | DOI

[9] A. P. Balachandran, V. P. Nair, S. G. Rajeev, A. Stern, Phys. Rev. D, 27 (1983), 1153 ; A. P. Balachandran, F. Lizzi, V. G. J. Rodgers, A. Stern, Nucl. Phys. B, 256 (1985), 525 | DOI | DOI