$S$-matrix description of nonequilibrium finite-temperature systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 149 (2006) no. 3, pp. 368-380 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the ‘`inclusive" {(}"partial"{\rm)} method for describing nonequilibrium dissipative systems at the early {\rm(}kinetic{\rm)} evolution stage, when the temperature distribution is nonuniform. We formulate the perturbation theory in terms of space–time-local temperature Green’s functions and derive the Liouville equation for the one-particle partition function.
Keywords: real-time finite-temperature field theory, perturbation theory.
@article{TMF_2006_149_3_a3,
     author = {V. V. Voronyuk and I. D. Mandzhavidze and A. N. Sisakyan},
     title = {$S$-matrix description of nonequilibrium finite-temperature systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {368--380},
     year = {2006},
     volume = {149},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2006_149_3_a3/}
}
TY  - JOUR
AU  - V. V. Voronyuk
AU  - I. D. Mandzhavidze
AU  - A. N. Sisakyan
TI  - $S$-matrix description of nonequilibrium finite-temperature systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2006
SP  - 368
EP  - 380
VL  - 149
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2006_149_3_a3/
LA  - ru
ID  - TMF_2006_149_3_a3
ER  - 
%0 Journal Article
%A V. V. Voronyuk
%A I. D. Mandzhavidze
%A A. N. Sisakyan
%T $S$-matrix description of nonequilibrium finite-temperature systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2006
%P 368-380
%V 149
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2006_149_3_a3/
%G ru
%F TMF_2006_149_3_a3
V. V. Voronyuk; I. D. Mandzhavidze; A. N. Sisakyan. $S$-matrix description of nonequilibrium finite-temperature systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 149 (2006) no. 3, pp. 368-380. http://geodesic.mathdoc.fr/item/TMF_2006_149_3_a3/

[1] A. A. Logunov, M. A. Mestvirishvili, Nguen van Hieu, Phys. Lett. B, 25 (1967), 611 ; R. Feynman, Phys. Rev. Lett., 23 (1969), 1415 | DOI | DOI

[2] A. A. Logunov, M. A. Mestvirishvili, V. A. Petrov, Ann. Phys., 114 (1978), 46 | DOI | MR

[3] A. A. Logunov, M. A. Mestvirishvili, Nguen Van Kheu, Mozhet li byt lokalnym effektivnoe vzaimodeistvie adronov v inklyuzivnykh protsessakh, Preprint IFVE 74-66, IFVE, Protvino, 1974

[4] N. N. Bogolyubov, Problemy dinamicheskoi teorii v statisticheskoi fizike, Gostekhizdat, M., 1946 | MR

[5] A. A. Logunov, M. A. Mestvirishvili, V. A. Petrov, EChAYa, 14 (1983), 493

[6] J. Manjavidze, A. Sissakian, Phys. Rep., 346 (2001), 1 | DOI

[7] J. Manjavidze, A. Sissakian, Part. Nucl., 31 (2000), 104

[8] E. P. Wigner, Phys. Rev., 40 (1932), 749 | DOI | Zbl

[9] E. Carruthers, F. Zachariasen, Rev. Mod. Phys., 55 (1983), 245 ; E. Calsetta, B. L. Hu, Phys. Rev. D, 37 (1988), 2878 | DOI | MR | DOI | MR

[10] P. S. Martin, J. Schwinger, Phys. Rev., 115 (1959), 1342 | DOI | MR | Zbl

[11] T. Bibilashvili, I. Pasiashvili, Ann. Phys., 220 (1992), 134 ; T. Bibilashvili, Phys. Lett. B, 313 (1993), 119 | DOI | DOI