Nonlinear equations for $p$-adic open, closed, and open-closed strings
Teoretičeskaâ i matematičeskaâ fizika, Tome 149 (2006) no. 3, pp. 354-367

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate the structure of solutions of boundary value problems for a one-dimensional nonlinear system of pseudodifferential equations describing the dynamics {(}rolling{\rm)} of $p$-adic open, closed, and open-closed strings for a scalar tachyon field using the method of successive approximations. For an open-closed string, we prove that the method converges for odd values of $p$ of the form $p=4n+1$ under the condition that the solution for the closed string is known. For $p=2$, we discuss the questions of the existence and the nonexistence of solutions of boundary value problems and indicate the possibility of discontinuous solutions appearing.
Keywords: string, tachyon.
@article{TMF_2006_149_3_a2,
     author = {V. S. Vladimirov},
     title = {Nonlinear equations for $p$-adic open, closed, and open-closed strings},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {354--367},
     publisher = {mathdoc},
     volume = {149},
     number = {3},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2006_149_3_a2/}
}
TY  - JOUR
AU  - V. S. Vladimirov
TI  - Nonlinear equations for $p$-adic open, closed, and open-closed strings
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2006
SP  - 354
EP  - 367
VL  - 149
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2006_149_3_a2/
LA  - ru
ID  - TMF_2006_149_3_a2
ER  - 
%0 Journal Article
%A V. S. Vladimirov
%T Nonlinear equations for $p$-adic open, closed, and open-closed strings
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2006
%P 354-367
%V 149
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2006_149_3_a2/
%G ru
%F TMF_2006_149_3_a2
V. S. Vladimirov. Nonlinear equations for $p$-adic open, closed, and open-closed strings. Teoretičeskaâ i matematičeskaâ fizika, Tome 149 (2006) no. 3, pp. 354-367. http://geodesic.mathdoc.fr/item/TMF_2006_149_3_a2/