Nonlinear equations for $p$-adic open, closed, and open-closed strings
Teoretičeskaâ i matematičeskaâ fizika, Tome 149 (2006) no. 3, pp. 354-367 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We investigate the structure of solutions of boundary value problems for a one-dimensional nonlinear system of pseudodifferential equations describing the dynamics {(}rolling{\rm)} of $p$-adic open, closed, and open-closed strings for a scalar tachyon field using the method of successive approximations. For an open-closed string, we prove that the method converges for odd values of $p$ of the form $p=4n+1$ under the condition that the solution for the closed string is known. For $p=2$, we discuss the questions of the existence and the nonexistence of solutions of boundary value problems and indicate the possibility of discontinuous solutions appearing.
Keywords: string, tachyon.
@article{TMF_2006_149_3_a2,
     author = {V. S. Vladimirov},
     title = {Nonlinear equations for $p$-adic open, closed, and open-closed strings},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {354--367},
     year = {2006},
     volume = {149},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2006_149_3_a2/}
}
TY  - JOUR
AU  - V. S. Vladimirov
TI  - Nonlinear equations for $p$-adic open, closed, and open-closed strings
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2006
SP  - 354
EP  - 367
VL  - 149
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2006_149_3_a2/
LA  - ru
ID  - TMF_2006_149_3_a2
ER  - 
%0 Journal Article
%A V. S. Vladimirov
%T Nonlinear equations for $p$-adic open, closed, and open-closed strings
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2006
%P 354-367
%V 149
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2006_149_3_a2/
%G ru
%F TMF_2006_149_3_a2
V. S. Vladimirov. Nonlinear equations for $p$-adic open, closed, and open-closed strings. Teoretičeskaâ i matematičeskaâ fizika, Tome 149 (2006) no. 3, pp. 354-367. http://geodesic.mathdoc.fr/item/TMF_2006_149_3_a2/

[1] L. Brekke, P. G. O.Freund, Phys. Rep. (Rev. Set. Phys. Lett.), 233:1 (1993), 1 | MR

[2] N. Moeller, M. Schnabl, JHEP, 01 (2004), 011 | DOI | MR

[3] I. M. Gelfand, G. E. Shilov, Obobschennye funktsii. Vyp. 2. Prostranstva osnovnykh i obobschennykh funktsii, Fizmatlit, M., 1958 | MR | Zbl

[4] V. S. Vladimirov, Ya. I. Volovich, TMF, 138:3 (2004), 355 ; math-ph/0306018 | DOI | MR | Zbl

[5] M. Grin, Dzh. Shvarts, E. Vitten, Teoriya superstrun, t. I, II, Mir, M., 1990 | MR

[6] L. Brekke, P. G. O. Freund, M. Olson, E. Witten, Nucl. Phys. B, 302 (1988), 365 ; В. С. Владимиров, И. В. Волович, Е. И. Зеленов, $p$-Адический анализ и математическая физика, Наука, М., 1994 ; A. Sen, JHEP, 04 (2002), 048 ; ; D. Ghoshal, A. Sen, Nucl. Phys. B, 584 (2000), 300 ; I. V. Volovich, Class. Quant. Grav., 4 (1987), L83 ; J. A. Minahan, JHEP, 03 (2001), 028 ; N. Barnaby, JHEP, 07 (2004), 025 ; ; E. Coletti, I. Sigalov, W. Taylor, JHEP, 08 (2005), 104 ; hep-th/0203211hep-th/0406120hep-th/0505031 | DOI | MR | MR | Zbl | DOI | MR | DOI | MR | Zbl | DOI | MR | DOI | MR | DOI | MR | DOI | MR

[7] P. H. Frampton, Y. Okada, Phys. Rev. D, 37:10 (1988), 3077 | DOI | MR

[8] N. Moeller, B. Zwiebach, JHEP, 10 (2002), 034 ; hep-th/0207107 | DOI | MR

[9] I. Ya. Aref'eva, L. V. Joukovskaja, A. S. Koshelev, JHEP, 09 (2003), 012 ; hep-th/0301137 | DOI | MR

[10] Ya. I. Volovich, J. Phys. A, 36 (2003), 8685 ; math-ph/0301028 | DOI | MR | Zbl

[11] V. S. Vladimirov, Izv. RAN. Ser. matem., 69:3 (2005), 55 ; math-ph/0507018 | DOI | MR | Zbl

[12] L. V. Zhukovskaya, TMF, 146:3 (2006), 402 | DOI | MR

[13] G. Calcagni, JHEP, 05 (2006), 012 ; hep-th/0512259 | DOI | MR

[14] V. S. Vladimirov, UMN, 60:6 (2005), 73 | DOI | MR | Zbl