Connection between the~Fokker--Planck--Kolmogorov and nonlinear Langevin equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 149 (2006) no. 3, pp. 483-501

Voir la notice de l'article provenant de la source Math-Net.Ru

We recall the general proof of the statement that the behavior of every holonomic nonrelativistic system can be described in terms of the Langevin equation in Euclidean $($imaginary$)$ time such that for certain initial conditions, the different stochastic correlators $($after averaging over the stochastic force$)$ coincide with the quantum mechanical correlators. The Fokker–Planck–Kolmogorov $($FPK$)$ equation that follows from this Langevin equation is equivalent to the Schrödinger equation in Euclidean time if the Hamiltonian is Hermitian, the dynamics are described by potential forces, the vacuum state is normalizable, and there is an energy gap between the vacuum state and the first excited state. These conditions are necessary for proving the limit and ergodic theorems. For three solvable models with nonlinear Langevin equations, we prove that the corresponding Schrödinger equations satisfy all the above conditions and lead to local linear FPK equations with the derivative order not exceeding two. We also briefly discuss several subtle mathematical questions of stochastic calculus.
Mots-clés : Langevin equation
Keywords: Euclidean space.
@article{TMF_2006_149_3_a11,
     author = {V. Ya. Fainberg},
     title = {Connection between {the~Fokker--Planck--Kolmogorov} and nonlinear {Langevin} equations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {483--501},
     publisher = {mathdoc},
     volume = {149},
     number = {3},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2006_149_3_a11/}
}
TY  - JOUR
AU  - V. Ya. Fainberg
TI  - Connection between the~Fokker--Planck--Kolmogorov and nonlinear Langevin equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2006
SP  - 483
EP  - 501
VL  - 149
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2006_149_3_a11/
LA  - ru
ID  - TMF_2006_149_3_a11
ER  - 
%0 Journal Article
%A V. Ya. Fainberg
%T Connection between the~Fokker--Planck--Kolmogorov and nonlinear Langevin equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2006
%P 483-501
%V 149
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2006_149_3_a11/
%G ru
%F TMF_2006_149_3_a11
V. Ya. Fainberg. Connection between the~Fokker--Planck--Kolmogorov and nonlinear Langevin equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 149 (2006) no. 3, pp. 483-501. http://geodesic.mathdoc.fr/item/TMF_2006_149_3_a11/