The coherent potential method in the diffusion problem on a random substitution lattice
Teoretičeskaâ i matematičeskaâ fizika, Tome 149 (2006) no. 2, pp. 252-261 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Based on the balance equation, we consider the diffusion problem on a hyperlattice with randomly distributed inaccessible sites. Using diagram methods, we find a self-consistent expression for the configurationally averaged Green's function in the coherent potential approximation. We show that this approach is applicable in a broad range of concentrations of accessible sites. Using this approximation, we find the exact asymptotic form of the static diffusion coefficient for a low concentration of blocked sites. This allows making good estimates of the percolation threshold in the random-site diffusion problem on an arbitrary hyperlattice.
Keywords: coherent potential method, Green's function, percolation, random site problem, diagram method.
Mots-clés : diffusion
@article{TMF_2006_149_2_a6,
     author = {M. P. Fateev},
     title = {The~coherent potential method in the~diffusion problem on a~random substitution lattice},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {252--261},
     year = {2006},
     volume = {149},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2006_149_2_a6/}
}
TY  - JOUR
AU  - M. P. Fateev
TI  - The coherent potential method in the diffusion problem on a random substitution lattice
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2006
SP  - 252
EP  - 261
VL  - 149
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2006_149_2_a6/
LA  - ru
ID  - TMF_2006_149_2_a6
ER  - 
%0 Journal Article
%A M. P. Fateev
%T The coherent potential method in the diffusion problem on a random substitution lattice
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2006
%P 252-261
%V 149
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2006_149_2_a6/
%G ru
%F TMF_2006_149_2_a6
M. P. Fateev. The coherent potential method in the diffusion problem on a random substitution lattice. Teoretičeskaâ i matematičeskaâ fizika, Tome 149 (2006) no. 2, pp. 252-261. http://geodesic.mathdoc.fr/item/TMF_2006_149_2_a6/

[1] J. W. Hause, K. W. Kehr, Phys. Rep., 150 (1987), 263 | DOI

[2] V. V. Bryksin, G. Yu. Yashin, FTT, 25 (1982), 3025

[3] N. P. Lazarev, M. P. Fateev, TMF, 89:3 (1991), 465

[4] I. Webman, J. Klafter, Phys. Rev. B, 26 (1982), 5958 | DOI

[5] R. F. Loring, H. C. Andersen, M. D. Fayer, J. Chem. Phys., 80 (1984), 5731 | DOI

[6] T. Odagaki, M. Lax, Phys. Rev. B, 36 (1987), 3851 | DOI

[7] V. V. Bryksin, FTT, 26 (1984), 1362

[8] D. Stauffer, A. Aharony, Introduction to Percolation Theory, Taylor and Francis, London, Washington DC, 1994 | MR | Zbl

[9] F. S. Dzheparov, A. A. Lundin, ZhETF, 75 (1978), 1017

[10] R. J. Elliott, J. A. Krumhansl, P. L. Leath, Rev. Mod. Phys., 46:3 (1974), 465 | DOI | MR

[11] R. Kubo, J. Phys. Soc. Japan, 17 (1962), 1100 | DOI | MR | Zbl

[12] F. Yonezawa, T. Matsubara, Progr. Theor. Phys. Suppl., 53 (1973), 1 | DOI

[13] R. A. Tahir-Kheli, Phys. Rev. B, 28 (1983), 3049 | DOI

[14] J. R. Manning, Phys. Rev. B, 4 (1971), 1111 | DOI