Phase diagrams of multicomponent lattice models
Teoretičeskaâ i matematičeskaâ fizika, Tome 149 (2006) no. 2, pp. 244-251
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider $q$-component models on both the integer lattice $\mathbb Z^2$ and a second-order Cayley tree and study phase diagrams of these models.
Keywords:
Cayley tree, Gibbs measure, phase diagram.
@article{TMF_2006_149_2_a5,
author = {N. N. Ganikhodzhaev and C. H. Pah},
title = {Phase diagrams of multicomponent lattice models},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {244--251},
year = {2006},
volume = {149},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2006_149_2_a5/}
}
N. N. Ganikhodzhaev; C. H. Pah. Phase diagrams of multicomponent lattice models. Teoretičeskaâ i matematičeskaâ fizika, Tome 149 (2006) no. 2, pp. 244-251. http://geodesic.mathdoc.fr/item/TMF_2006_149_2_a5/
[1] S. A. Pirogov, Ya. G. Sinai, TMF, 25:3 (1975), 358–359 | MR
[2] S. A. Pirogov, Ya. G. Sinai, TMF, 26:1 (1976), 61–76 | MR
[3] R. Peierls, Proc. Camb. Philos. Soc., 32 (1936), 477–481 | DOI | Zbl
[4] R. B. Griffiths, Phys. Rev. A, 136:2 (1964), 437–439 | DOI | MR | Zbl
[5] R. L. Dobrushin, Teor. veroyatn. i ee primen., 10 (1965), 209–230 | MR | Zbl
[6] U. A. Rozikov, Lett. Math. Phys., 71:5 (2005), 27–38 | DOI | MR | Zbl
[7] N. N. Ganikhodzhaev, TMF, 130:3 (2002), 493–499 | DOI | MR | Zbl
[8] N. N. Ganikhodjaev, C. H. Pah, M. R. B. Wahiddin, J. Phys. A, 36 (2003), 4283–4289 | DOI | MR | Zbl
[9] R. A. Minlos, Introduction to Mathematical Statistical Physics, University Lecture Series, 19, AMS, Providence, RI, 2000 | MR | Zbl