A~discrete ``three-particle" Schr\"odinger operator in the~Hubbard model
Teoretičeskaâ i matematičeskaâ fizika, Tome 149 (2006) no. 2, pp. 228-243

Voir la notice de l'article provenant de la source Math-Net.Ru

In the space $L_2(T^ \nu \times T^\nu)$, where $T^\nu$ is a $\nu$-dimensional torus, we study the spectral properties of the "three-particle" discrete Schrödinger operator $\widehat H=H_0+H_1+H_2$, where $H_0$ is the operator of multiplication by a function and $H_1$ and $H_2$ are partial integral operators. We prove several theorems concerning the essential spectrum of $\widehat H$. We study the discrete and essential spectra of the Hamiltonians $H^{\mathrm{t}}$ and $\mathbf{h}$ arising in the Hubbard model on the three-dimensional lattice.
Keywords: discrete Schrödinger operator, Hubbard model, discrete spectrum of a discrete operator, essential spectrum of a discrete operator.
@article{TMF_2006_149_2_a4,
     author = {Yu. Kh. \`Eshkabilov},
     title = {A~discrete ``three-particle" {Schr\"odinger} operator in {the~Hubbard} model},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {228--243},
     publisher = {mathdoc},
     volume = {149},
     number = {2},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2006_149_2_a4/}
}
TY  - JOUR
AU  - Yu. Kh. Èshkabilov
TI  - A~discrete ``three-particle" Schr\"odinger operator in the~Hubbard model
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2006
SP  - 228
EP  - 243
VL  - 149
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2006_149_2_a4/
LA  - ru
ID  - TMF_2006_149_2_a4
ER  - 
%0 Journal Article
%A Yu. Kh. Èshkabilov
%T A~discrete ``three-particle" Schr\"odinger operator in the~Hubbard model
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2006
%P 228-243
%V 149
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2006_149_2_a4/
%G ru
%F TMF_2006_149_2_a4
Yu. Kh. Èshkabilov. A~discrete ``three-particle" Schr\"odinger operator in the~Hubbard model. Teoretičeskaâ i matematičeskaâ fizika, Tome 149 (2006) no. 2, pp. 228-243. http://geodesic.mathdoc.fr/item/TMF_2006_149_2_a4/