Bi-Hamiltonian systems of natural form
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 149 (2006) no. 2, pp. 161-182
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We propose a new method for constructing integrable systems of natural form.
In this method, integrals of motion are solutions of an overdetermined system
of algebraic and partial differential equations obtained from the compatibility 
condition for Poisson tensors polynomial in the momenta and
from the condition that the bi-Lagrangian distribution corresponding 
to the integrals of motion is invariant under the action of the recursion operator.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
integrable system, bi-Hamiltonian manifold, separation of variables.
                    
                  
                
                
                @article{TMF_2006_149_2_a1,
     author = {A. V. Tsiganov},
     title = {Bi-Hamiltonian systems of natural form},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {161--182},
     publisher = {mathdoc},
     volume = {149},
     number = {2},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2006_149_2_a1/}
}
                      
                      
                    A. V. Tsiganov. Bi-Hamiltonian systems of natural form. Teoretičeskaâ i matematičeskaâ fizika, Tome 149 (2006) no. 2, pp. 161-182. http://geodesic.mathdoc.fr/item/TMF_2006_149_2_a1/
