Quaternionic vector coherent states and the supersymmetric harmonic oscillator
Teoretičeskaâ i matematičeskaâ fizika, Tome 149 (2006) no. 1, pp. 80-98 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The quaternionic vector coherent states are realized as coherent states of the supersymmetric harmonic oscillator with broken symmetry in analogy with the standard canonical coherent states of the ordinary harmonic oscillator. We study the nonclassical properties of the oscillator, such as the photon number distribution and signal-to-quantum-noise ratio in terms of these states and discuss the squeezing properties and the temporal stability of the coherent states. We obtain the orthogonal polynomials associated with the quaternionic vector coherent states.
Keywords: coherent state, vector coherent state.
@article{TMF_2006_149_1_a6,
     author = {K. Thirulogasanthar and A. Krzyzak and Q. D. Katatbeh},
     title = {Quaternionic vector coherent states and the~supersymmetric harmonic oscillator},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {80--98},
     year = {2006},
     volume = {149},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2006_149_1_a6/}
}
TY  - JOUR
AU  - K. Thirulogasanthar
AU  - A. Krzyzak
AU  - Q. D. Katatbeh
TI  - Quaternionic vector coherent states and the supersymmetric harmonic oscillator
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2006
SP  - 80
EP  - 98
VL  - 149
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2006_149_1_a6/
LA  - ru
ID  - TMF_2006_149_1_a6
ER  - 
%0 Journal Article
%A K. Thirulogasanthar
%A A. Krzyzak
%A Q. D. Katatbeh
%T Quaternionic vector coherent states and the supersymmetric harmonic oscillator
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2006
%P 80-98
%V 149
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2006_149_1_a6/
%G ru
%F TMF_2006_149_1_a6
K. Thirulogasanthar; A. Krzyzak; Q. D. Katatbeh. Quaternionic vector coherent states and the supersymmetric harmonic oscillator. Teoretičeskaâ i matematičeskaâ fizika, Tome 149 (2006) no. 1, pp. 80-98. http://geodesic.mathdoc.fr/item/TMF_2006_149_1_a6/

[1] S. T. Ali, J.-P. Antoine, J.-P. Gazeau, Coherent States, Wavelets and their Generalizations, Springer, N. Y., 2000 | MR | Zbl

[2] Coherent States, Applications in Physics and Mathematical Physics, eds. J. R. Klauder, B. S. Skagerstam, World Scientific, Singapore | MR | Zbl

[3] A. O. Barut, L. Girardello, Commun. Math. Phys., 21 (1971), 41–55 ; J. P. Gazeau, J. R. Klauder, J. Phys. A, 32 (1999), 123–132 ; M. Novaes, J. P. Gazeau, J. Phys. A, 36 (2003), 199–212 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[4] K. Thirulogasanthar, S. T. Ali, J. Math. Phys., 44:11 (2003), 5070–5083 | DOI | MR | Zbl

[5] S. T. Ali, M. Englis, J. P. Gazeau, J. Phys. A, 37 (2004), 6067–6089 | DOI | MR | Zbl

[6] J. Jayaraman, R. de Lima Rodrigues, A. N. Vaidya, J. Phys. A, 32 (1999), 6643–6652 | DOI | MR | Zbl

[7] M. Orszag, S. Salamo, J. Phys. A, 21 (1988), L1059–L1064 | DOI | MR

[8] B. W. Fatyga, V. A. Kostelecký, M. M. Nieto, D. R. Truax, Phys. Rev. D, 43 (1991), 1403–1412 | DOI | MR

[9] C. Aragone, F. Zypman, J. Phys. A, 19 (1986), 2267–2279 | DOI | MR | Zbl

[10] Y. Bérubé-Lauzière, V. Hussin, J. Phys. A, 26 (1993), 6271–6275 | DOI | MR

[11] G. Junker, P. Roy, Phys. Lett. A, 232 (1997), 155–161 | DOI | MR | Zbl

[12] M. Daoud, V. Hussin, J. Phys. A, 35 (2002), 7381–7402 | DOI | MR | Zbl

[13] J. J. Sakurai, Modern quantum mechanics, Addison-Wesley Pub. Co., Reading, Mass., 1994

[14] K. A. Penson, A. I. Solomon, J. Math. Phys., 40 (1999), 2354–2363 | DOI | MR | Zbl

[15] J.-P. Antoine, J.-P. Gazeau, P. Monceau, J. R. Klauder, K. A. Penson, J. Math. Phys., 42 (2001), 2349–2387 | DOI | MR | Zbl

[16] V. V. Borzov, Integral Transform. Spec. Funct., 12 (2001), 115–138 ; V. V. Borzov, E. V. Damaskinsky, P. P. Kulish, Rev. Math. Phys., 12 (2000), 691–710 | DOI | MR | Zbl | MR | Zbl