Gibbs measures for the SOS model with four states on a Cayley tree
Teoretičeskaâ i matematičeskaâ fizika, Tome 149 (2006) no. 1, pp. 18-31 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We analyze the SOS {(}solid-on-solid{\rm)} model with spins 0, 1, 2, 3 on a Cayley tree of order $k\ge 1$. We consider translation-invariant and periodic splitting Gibbs measures for this model. The majority of the constructed Gibbs measures are mirror symmetric.
Keywords: Cayley tree, Gibbs measure, periodic Gibbs measure.
Mots-clés : configuration
@article{TMF_2006_149_1_a1,
     author = {U. A. Rozikov and Sh. A. Shoyusupov},
     title = {Gibbs measures for {the~SOS} model with four states on {a~Cayley} tree},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {18--31},
     year = {2006},
     volume = {149},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2006_149_1_a1/}
}
TY  - JOUR
AU  - U. A. Rozikov
AU  - Sh. A. Shoyusupov
TI  - Gibbs measures for the SOS model with four states on a Cayley tree
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2006
SP  - 18
EP  - 31
VL  - 149
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2006_149_1_a1/
LA  - ru
ID  - TMF_2006_149_1_a1
ER  - 
%0 Journal Article
%A U. A. Rozikov
%A Sh. A. Shoyusupov
%T Gibbs measures for the SOS model with four states on a Cayley tree
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2006
%P 18-31
%V 149
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2006_149_1_a1/
%G ru
%F TMF_2006_149_1_a1
U. A. Rozikov; Sh. A. Shoyusupov. Gibbs measures for the SOS model with four states on a Cayley tree. Teoretičeskaâ i matematičeskaâ fizika, Tome 149 (2006) no. 1, pp. 18-31. http://geodesic.mathdoc.fr/item/TMF_2006_149_1_a1/

[1] K. Preston, Gibbsovskie sostoyaniya na schetnykh mnozhestvakh, Mir, M., 1977 | MR

[2] A. E. Mazel, Yu. M. Suhov, J. Statist. Phys., 64 (1991), 111–134 | DOI | MR | Zbl

[3] U. A. Rozikov, Yu. M. Suhov, Gibbs measures for SOS models on a Cayley tree, math.PR/0409047 | MR

[4] R. Fernandez, Contour ensembles and the description of Gibbsian probability distributions at low temperature, , 1998 http://www.univ-rouen.fr//LMRS/Persopage/Fernandez/resucont.html | MR

[5] U. A. Rozikov, Lett. Math. Phys., 71:1 (2005), 27–38 | DOI | MR | Zbl

[6] N. N. Ganikhodzhaev, U. A. Rozikov, TMF, 111:1 (1997), 109–117 | DOI | MR | Zbl

[7] Ya. G. Sinai, Teoriya fazovykh perekhodov: strogie rezultaty, Nauka, M., 1980 | MR | Zbl

[8] H. O. Georgii, Gibbs Measures and Phase Transitions, De Gruyter, Berlin, 1988 | MR | Zbl

[9] Yu. M. Suhov, U. A. Rozikov, Queueing Syst., 46 (2004), 197–212 | DOI | MR | Zbl

[10] U. A. Rozikov, TMF, 112:1 (1997), 170–175 | DOI | MR | Zbl

[11] P. M. Blekher, N. N. Ganikhodzhaev, Teoriya ver. primen., 35:2 (1990), 220–230 | MR | Zbl

[12] U. A. Rozikov, TMF, 118:1 (1999), 95–104 | DOI | MR | Zbl

[13] U. A. Rozikov, Sibirsk. matem. zhurnal, 39:2 (1998), 427–435 | MR | Zbl

[14] N. N. Ganikhodzhaev, TMF, 85:2 (1990), 163–175 | MR

[15] J. B. Martin, U. A. Rozikov, Yu. M. Suhov, J. Nonlinear Math. Phys., 12:3 (2005), 432–448 | DOI | MR | Zbl

[16] F. M. Mukhamedov, U. A. Rozikov, J. Statist. Phys., 114 (2004), 825–848 ; 119 (2005), 427–446 | DOI | MR | Zbl | DOI | MR | Zbl