Sylvester–'t Hooft generators and relations between them for $\mathfrak{sl}(n)$ and $\mathfrak{gl}(n|n)$
Teoretičeskaâ i matematičeskaâ fizika, Tome 149 (2006) no. 1, pp. 3-17 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Among the simple finite-dimensional Lie algebras, only $\mathfrak{sl}(n)$ has two finite-order automorphisms that have no common nonzero eigenvector with the eigenvalue one. It turns out that these automorphisms are inner and form a pair of generators that allow generating all of $\mathfrak{sl}(n)$ under bracketing. It seems that Sylvester was the first to mention these generators, but he used them as generators of the associative algebra of all $n\times n$ matrices $\operatorname{Mat}(n)$. These generators appear in the description of elliptic solutions of the classical Yang–Baxter equation, the orthogonal decompositions of Lie algebras, 't Hooft's work on confinement operators in QCD, and various other instances. Here, we give an algorithm that both generates $\mathfrak{sl}(n)$ and explicitly describes a set of defining relations. For simple (up to the center) Lie superalgebras, analogues of Sylvester generators exist only for $\mathfrak{gl}(n|n)$. We also compute the relations for this case.
Keywords: defining relations, Lie superalgebras.
Mots-clés : Lie algebras
@article{TMF_2006_149_1_a0,
     author = {Ch. Sachse},
     title = {Sylvester{\textendash}'t {Hooft} generators and relations between them for $\mathfrak{sl}(n)$ and $\mathfrak{gl}(n|n)$},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {3--17},
     year = {2006},
     volume = {149},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2006_149_1_a0/}
}
TY  - JOUR
AU  - Ch. Sachse
TI  - Sylvester–'t Hooft generators and relations between them for $\mathfrak{sl}(n)$ and $\mathfrak{gl}(n|n)$
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2006
SP  - 3
EP  - 17
VL  - 149
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2006_149_1_a0/
LA  - ru
ID  - TMF_2006_149_1_a0
ER  - 
%0 Journal Article
%A Ch. Sachse
%T Sylvester–'t Hooft generators and relations between them for $\mathfrak{sl}(n)$ and $\mathfrak{gl}(n|n)$
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2006
%P 3-17
%V 149
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2006_149_1_a0/
%G ru
%F TMF_2006_149_1_a0
Ch. Sachse. Sylvester–'t Hooft generators and relations between them for $\mathfrak{sl}(n)$ and $\mathfrak{gl}(n|n)$. Teoretičeskaâ i matematičeskaâ fizika, Tome 149 (2006) no. 1, pp. 3-17. http://geodesic.mathdoc.fr/item/TMF_2006_149_1_a0/

[1] P. Grozman, D. Leites, “Lie superalgebras of supermatrices of complex size. Their generalizations and related integrable systems”, Complex Analysis and Related Topics, Proc. Internatnl. Symp. (Mexico, 1996), eds. E. Ramírez de Arellano, M. Shapiro, L. Tovar, N. Vasilevski, Birkhäuser, Basel, 2000, 73–105 ; math.RT/0202177 | DOI | MR | Zbl

[2] P. Grozman, D. Leites, Czech. J. Phys., 51:1 (2001), 1–22 ; hep-th/9702073 | DOI | MR

[3] D. Leites, E. Poletaeva, Math. Scand., 81:1 (1997), 5–19 ; ; P. Grozman, D. Leites, E. Poletaeva, Homology, Homotopy Appl., 4:2 (2002), 259–275 ; math.RT/0510019math.RT/0202152 | DOI | MR | Zbl | DOI | MR | Zbl

[4] P. Grozman, D. Leites, “Defining relations associated with the principal $\mathfrak{sl}(2)$-subalgebras”, Contemporary Mathematical Physics, F. A. Berezin memorial volume, Amer. Math. Soc. Transl. Ser. 2, 175, eds. R. Dobrushin, R. Minlos, M. Shubin, A. Vershik, Amer. Math. Soc., Providence, RI, 1996, 57–67 ; math-ph/0510013 | MR | Zbl

[5] D. Leites, A. Sergeev, “Orthogonal polynomials of discrete variable and Lie algebras of complex size matrices”, Procedings of M. Saveliev memorial conference, MPIM, Bonn, February, 1999, MPIM-1999-36, 49–70, ; Д. А. Лейтес, А. Н. Сергеев, ТМФ, 123:2 (2000), 205–236 ; http://www.mpim-bonn.mpg.demath.RT/0509528 | DOI | MR | Zbl

[6] C. Zachos, “Hamiltonian flows, $SU(\infty)$, $SO(\infty)$, $USp(\infty)$, and strings”, Differential Geometric Methods in Theoretical Physics: Physics and Geometry, NATO ASI Series, Ser. B, 245, eds. L.-L. Chau, W. Nahm, Plenum, N. Y., 1990, 423–430 | DOI | MR | Zbl

[7] J. Sylvester, Johns Hopkins University Circulars I, 1882, 241 ; Johns Hopkins University Circulars II, 1883, 46 ; Johns Hopkins University Circulars III, 1884, 7; The Collected Mathematical Papers of James Joseph Sylvester, Cambridge Univ. Press, Cambridge, 1909 | MR | Zbl | Zbl

[8] H. Weyl, Z. Phys., 46 (1927), 1–46 ; The Theory of Groups and Quantum Mechanics, Dover, N.Y., 1931 | DOI | Zbl

[9] G. 't Hooft, Nucl. Phys. B, 138 (1978), 1–25 | DOI | MR

[10] D. Fairlie, P. Fletcher, C. Zachos, Phys. Lett. B, 218 (1989), 203–206 ; D. Fairlie, C. Zachos, Phys. Lett. B, 224 (1989), 101–107 ; J. Math. Phys., 31 (1990), 1088–1094 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[11] J. Moyal, Proc. Camb. Philos. Soc., 45 (1949), 99–124 | DOI | MR | Zbl

[12] J. Hoppe, Phys. Lett. B, 215 (1988), 706–710 | DOI | MR

[13] D. Fairlie, C. Zachos, Phys. Lett. B, 620 (2005), 195–199 ; hep-th/0505053 | DOI | MR | Zbl

[14] A. A. Belavin, V. G. Drinfeld, Funkts. analiz i ego prilozh., 16:3 (1982), 1–29 | MR | Zbl

[15] A. A. Belavin, V. G. Drinfeld, Triangle equations and simple Lie algebras, Classic Reviews in Mathematics and Mathematical Physics, 1, Harwood Acad. Publ., Amsterdam, 1998 | MR | Zbl

[16] A. I. Kostrikin, I. A. Kostrikin, V. A. Ufnarovskii, Tr. MIAN, 158, 1981, 105–120 | MR | Zbl

[17] A. I. Kostrikin, Pham Huu Tiep, Orthogonal Decompositions and Integral Lattices, de Gruyter Expositions in Mathematics, 15, Walter de Gruyter, Berlin, 1994 | MR

[18] L. A. Ferreira, D. I. Oliv, M. V. Savelev, TMF, 102 (1995), 17–31 ; hep-th/9411036 | MR | Zbl

[19] Y. Buhturin, A. Molev, Czech. J. Phys., 54:11 (2004), 1159–1164 | DOI | MR

[20] J. Miller, P. B. Weichman, M. C. Cross, Phys. Rev. A, 45 (1992), 2328–2359 | DOI

[21] C.-Y. Mou, P. B. Weichman, Phys. Rev. E, 52 (1995), 3738–3796 | DOI | MR

[22] V. Zeitlin, Physica D, 49 (1991), 353–362 | DOI | MR | Zbl

[23] P. Grozman, SuperLie, http://www.equaonline.com/math/SuperLie

[24] D. A. Leites, V. V. Serganova, TMF, 58:1 (1984), 26–37 | MR | Zbl