Mots-clés : Lie algebras
@article{TMF_2006_149_1_a0,
author = {Ch. Sachse},
title = {Sylvester{\textendash}'t {Hooft} generators and relations between them for $\mathfrak{sl}(n)$ and $\mathfrak{gl}(n|n)$},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {3--17},
year = {2006},
volume = {149},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2006_149_1_a0/}
}
TY - JOUR
AU - Ch. Sachse
TI - Sylvester–'t Hooft generators and relations between them for $\mathfrak{sl}(n)$ and $\mathfrak{gl}(n|n)$
JO - Teoretičeskaâ i matematičeskaâ fizika
PY - 2006
SP - 3
EP - 17
VL - 149
IS - 1
UR - http://geodesic.mathdoc.fr/item/TMF_2006_149_1_a0/
LA - ru
ID - TMF_2006_149_1_a0
ER -
Ch. Sachse. Sylvester–'t Hooft generators and relations between them for $\mathfrak{sl}(n)$ and $\mathfrak{gl}(n|n)$. Teoretičeskaâ i matematičeskaâ fizika, Tome 149 (2006) no. 1, pp. 3-17. http://geodesic.mathdoc.fr/item/TMF_2006_149_1_a0/
[1] P. Grozman, D. Leites, “Lie superalgebras of supermatrices of complex size. Their generalizations and related integrable systems”, Complex Analysis and Related Topics, Proc. Internatnl. Symp. (Mexico, 1996), eds. E. Ramírez de Arellano, M. Shapiro, L. Tovar, N. Vasilevski, Birkhäuser, Basel, 2000, 73–105 ; math.RT/0202177 | DOI | MR | Zbl
[2] P. Grozman, D. Leites, Czech. J. Phys., 51:1 (2001), 1–22 ; hep-th/9702073 | DOI | MR
[3] D. Leites, E. Poletaeva, Math. Scand., 81:1 (1997), 5–19 ; ; P. Grozman, D. Leites, E. Poletaeva, Homology, Homotopy Appl., 4:2 (2002), 259–275 ; math.RT/0510019math.RT/0202152 | DOI | MR | Zbl | DOI | MR | Zbl
[4] P. Grozman, D. Leites, “Defining relations associated with the principal $\mathfrak{sl}(2)$-subalgebras”, Contemporary Mathematical Physics, F. A. Berezin memorial volume, Amer. Math. Soc. Transl. Ser. 2, 175, eds. R. Dobrushin, R. Minlos, M. Shubin, A. Vershik, Amer. Math. Soc., Providence, RI, 1996, 57–67 ; math-ph/0510013 | MR | Zbl
[5] D. Leites, A. Sergeev, “Orthogonal polynomials of discrete variable and Lie algebras of complex size matrices”, Procedings of M. Saveliev memorial conference, MPIM, Bonn, February, 1999, MPIM-1999-36, 49–70, ; Д. А. Лейтес, А. Н. Сергеев, ТМФ, 123:2 (2000), 205–236 ; http://www.mpim-bonn.mpg.demath.RT/0509528 | DOI | MR | Zbl
[6] C. Zachos, “Hamiltonian flows, $SU(\infty)$, $SO(\infty)$, $USp(\infty)$, and strings”, Differential Geometric Methods in Theoretical Physics: Physics and Geometry, NATO ASI Series, Ser. B, 245, eds. L.-L. Chau, W. Nahm, Plenum, N. Y., 1990, 423–430 | DOI | MR | Zbl
[7] J. Sylvester, Johns Hopkins University Circulars I, 1882, 241 ; Johns Hopkins University Circulars II, 1883, 46 ; Johns Hopkins University Circulars III, 1884, 7; The Collected Mathematical Papers of James Joseph Sylvester, Cambridge Univ. Press, Cambridge, 1909 | MR | Zbl | Zbl
[8] H. Weyl, Z. Phys., 46 (1927), 1–46 ; The Theory of Groups and Quantum Mechanics, Dover, N.Y., 1931 | DOI | Zbl
[9] G. 't Hooft, Nucl. Phys. B, 138 (1978), 1–25 | DOI | MR
[10] D. Fairlie, P. Fletcher, C. Zachos, Phys. Lett. B, 218 (1989), 203–206 ; D. Fairlie, C. Zachos, Phys. Lett. B, 224 (1989), 101–107 ; J. Math. Phys., 31 (1990), 1088–1094 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl
[11] J. Moyal, Proc. Camb. Philos. Soc., 45 (1949), 99–124 | DOI | MR | Zbl
[12] J. Hoppe, Phys. Lett. B, 215 (1988), 706–710 | DOI | MR
[13] D. Fairlie, C. Zachos, Phys. Lett. B, 620 (2005), 195–199 ; hep-th/0505053 | DOI | MR | Zbl
[14] A. A. Belavin, V. G. Drinfeld, Funkts. analiz i ego prilozh., 16:3 (1982), 1–29 | MR | Zbl
[15] A. A. Belavin, V. G. Drinfeld, Triangle equations and simple Lie algebras, Classic Reviews in Mathematics and Mathematical Physics, 1, Harwood Acad. Publ., Amsterdam, 1998 | MR | Zbl
[16] A. I. Kostrikin, I. A. Kostrikin, V. A. Ufnarovskii, Tr. MIAN, 158, 1981, 105–120 | MR | Zbl
[17] A. I. Kostrikin, Pham Huu Tiep, Orthogonal Decompositions and Integral Lattices, de Gruyter Expositions in Mathematics, 15, Walter de Gruyter, Berlin, 1994 | MR
[18] L. A. Ferreira, D. I. Oliv, M. V. Savelev, TMF, 102 (1995), 17–31 ; hep-th/9411036 | MR | Zbl
[19] Y. Buhturin, A. Molev, Czech. J. Phys., 54:11 (2004), 1159–1164 | DOI | MR
[20] J. Miller, P. B. Weichman, M. C. Cross, Phys. Rev. A, 45 (1992), 2328–2359 | DOI
[21] C.-Y. Mou, P. B. Weichman, Phys. Rev. E, 52 (1995), 3738–3796 | DOI | MR
[22] V. Zeitlin, Physica D, 49 (1991), 353–362 | DOI | MR | Zbl
[23] P. Grozman, SuperLie, http://www.equaonline.com/math/SuperLie
[24] D. A. Leites, V. V. Serganova, TMF, 58:1 (1984), 26–37 | MR | Zbl