Polynomial Hamiltonian form of general relativity
Teoretičeskaâ i matematičeskaâ fizika, Tome 148 (2006) no. 3, pp. 459-494
Voir la notice de l'article provenant de la source Math-Net.Ru
The phase space of general relativity is extended to a Poisson manifold by
inclusion of the determinant of the metric and conjugate momentum as
additional independent variables. As a result, the action and the constraints
take a polynomial form. We propose a new expression for the generating
functional for the Green's functions. We show that the Dirac bracket defines a degenerate Poisson structure on a manifold and the second-class constraints
are the Casimir functions with respect to this structure. As an application
of the new variables, we consider the Friedmann universe.
Keywords:
general relativity, Hamiltonian formalism.
@article{TMF_2006_148_3_a7,
author = {M. O. Katanaev},
title = {Polynomial {Hamiltonian} form of general relativity},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {459--494},
publisher = {mathdoc},
volume = {148},
number = {3},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2006_148_3_a7/}
}
M. O. Katanaev. Polynomial Hamiltonian form of general relativity. Teoretičeskaâ i matematičeskaâ fizika, Tome 148 (2006) no. 3, pp. 459-494. http://geodesic.mathdoc.fr/item/TMF_2006_148_3_a7/