Polynomial Hamiltonian form of general relativity
Teoretičeskaâ i matematičeskaâ fizika, Tome 148 (2006) no. 3, pp. 459-494 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The phase space of general relativity is extended to a Poisson manifold by inclusion of the determinant of the metric and conjugate momentum as additional independent variables. As a result, the action and the constraints take a polynomial form. We propose a new expression for the generating functional for the Green's functions. We show that the Dirac bracket defines a degenerate Poisson structure on a manifold and the second-class constraints are the Casimir functions with respect to this structure. As an application of the new variables, we consider the Friedmann universe.
Keywords: general relativity, Hamiltonian formalism.
@article{TMF_2006_148_3_a7,
     author = {M. O. Katanaev},
     title = {Polynomial {Hamiltonian} form of general relativity},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {459--494},
     year = {2006},
     volume = {148},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2006_148_3_a7/}
}
TY  - JOUR
AU  - M. O. Katanaev
TI  - Polynomial Hamiltonian form of general relativity
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2006
SP  - 459
EP  - 494
VL  - 148
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2006_148_3_a7/
LA  - ru
ID  - TMF_2006_148_3_a7
ER  - 
%0 Journal Article
%A M. O. Katanaev
%T Polynomial Hamiltonian form of general relativity
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2006
%P 459-494
%V 148
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2006_148_3_a7/
%G ru
%F TMF_2006_148_3_a7
M. O. Katanaev. Polynomial Hamiltonian form of general relativity. Teoretičeskaâ i matematičeskaâ fizika, Tome 148 (2006) no. 3, pp. 459-494. http://geodesic.mathdoc.fr/item/TMF_2006_148_3_a7/

[1] P. A. M. Dirak, “Teoriya gravitatsii v gamiltonovoi forme”, Noveishie problemy gravitatsii, ed. D. Ivanenko, IL, M., 1961, 139–158

[2] R. Arnowitt, S. Deser, S. W. Misner, “The dynamics of general relativity”, Gravitation: an introduction to current research, ed. L. Witten, John Wiley Sons, N.Y.–London, 1962, 227–265 ; gr-qc/0405109 | MR

[3] T. Regge, C. Teitelboim, Ann. Phys., 88 (1974), 286–318 | DOI | MR | Zbl

[4] B. S. DeWitt, Phys. Rev., 160:5 (1967), 1113–1148 | DOI | Zbl

[5] C. Teitelboim, Ann. Phys., 79 (1973), 542–557 | DOI

[6] K. Kuchar, J. Math. Phys., 17:5 (1976), 792–800 | DOI | MR

[7] P. A. M. Dirac, “Interacting gravitational and spinor fields”, Recent Developments in General Relativity, Pergamon, PNW – Polish Scientific Publishers, Warsaw, Oxford, 1962, 191–200 | MR

[8] J. Schwinger, Phys. Rev., 130:3 (1963), 1253–1258 | DOI | MR | Zbl

[9] S. Deser, C. J. Isham, Phys. Rev. D, 14:10 (1976), 2505–2510 | DOI | MR

[10] J. M. Charap, M. Henneaux, J. E. Nelson, Class. Q. Grav., 5:11 (1988), 1405–1414 | DOI | MR

[11] A. Ashtekar, Phys. Rev. D, 36:6 (1987), 1587–1602 | DOI | MR

[12] R. S. Tate, Class. Q. Grav., 9 (1992), 101–119 | DOI | MR

[13] L. D. Faddeev, TMF, 1:1 (1969), 3–18 | MR | Zbl

[14] P. A. M. Dirac, Can. J. Math., 3:1 (1951), 1–23 | DOI | MR | Zbl

[15] G. Goldstein, Klassicheskaya mekhanika, Nauka, M., 1975 | MR | MR | Zbl

[16] Y. Choquet-Bruhat, C. DeWitt-Morette, Analysis, Manifolds and Physics, North–Holland, Amsterdam, 1989 | MR | Zbl

[17] D. M. Gitman, I. V. Tyutin, Kanonicheskoe kvantovanie polei so svyazyami, Nauka, M., 1986 | MR | Zbl

[18] M. O. Katanaev, Ann. Phys., 296:1 (2002), 1–50 | DOI | MR | Zbl

[19] A. A. Fridman, Zhurn. Russk. fiz.-khim. o-va, chast fiz., 56:1 (1924), 59 ; УФН, 80:3 (1963), 439–446 ; 447–452 ; 93:2 (1967), 280–287 | Zbl | MR | Zbl | Zbl

[20] L. D. Landau, I. M. Lifshits, Teoriya polya, Nauka, M., 1988 | MR | Zbl

[21] A. Peres, Nuovo Cimento, 28:4 (1963), 865–867 | DOI | MR | Zbl

[22] M. O. Katanaev, Gen. Rel. Grav., 38 (2006), 1233–1240 ; gr-qc/0507026 | DOI | MR | Zbl