A Hunziker–van Winter–Zhislin theorem for a four-particle lattice Schrödinger operator
Teoretičeskaâ i matematičeskaâ fizika, Tome 148 (2006) no. 3, pp. 428-443 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a discrete Schrödinger operator for four arbitrary particles with short-range pair potentials. We describe the position and the structure of its essential spectrum and prove the Hunziker–van Winter–Zhislin theorem.
Keywords: cluster decomposition, channel operator, essential spectrum, compact operator.
@article{TMF_2006_148_3_a5,
     author = {M. I. Muminov},
     title = {A~Hunziker{\textendash}van~Winter{\textendash}Zhislin theorem for a~four-particle lattice {Schr\"odinger} operator},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {428--443},
     year = {2006},
     volume = {148},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2006_148_3_a5/}
}
TY  - JOUR
AU  - M. I. Muminov
TI  - A Hunziker–van Winter–Zhislin theorem for a four-particle lattice Schrödinger operator
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2006
SP  - 428
EP  - 443
VL  - 148
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2006_148_3_a5/
LA  - ru
ID  - TMF_2006_148_3_a5
ER  - 
%0 Journal Article
%A M. I. Muminov
%T A Hunziker–van Winter–Zhislin theorem for a four-particle lattice Schrödinger operator
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2006
%P 428-443
%V 148
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2006_148_3_a5/
%G ru
%F TMF_2006_148_3_a5
M. I. Muminov. A Hunziker–van Winter–Zhislin theorem for a four-particle lattice Schrödinger operator. Teoretičeskaâ i matematičeskaâ fizika, Tome 148 (2006) no. 3, pp. 428-443. http://geodesic.mathdoc.fr/item/TMF_2006_148_3_a5/

[1] S. P. Merkurev, L. D. Faddeev, Kvantovaya teoriya rasseyaniya dlya sistem neskolkikh chastits, Nauka, M., 1985 ; Х. Цикон, Р. Фрезе, В. Кирш, Б. Саймон, Операторы Шредингера с приложениями к квантовой механике и глобальной геометрии, Мир, М., 1990 | MR | Zbl | MR | MR | Zbl

[2] G. M. Zhislin, Tr. Mosk. matem. ob-va, 9 (1960), 81–120 ; C. Van Winter, Mat.-Fys. Danske Vid. Selsk., 2:8 (1964), 1–60 ; W. Hunziker, Helv. Phys. Acta, 39 (1966), 451–462 | MR | Zbl | MR | Zbl | MR | Zbl

[3] S. Albeverio, S. N. Lakaev, Zh. I. Abdullaev, Funkts. anal. i ego prilozh., 36:3 (2002), 56–60 | DOI | MR | Zbl

[4] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, t. 4, Mir, M., 1982 | MR | MR | Zbl

[5] P. Khalmosh, Gilbertovo prostranstvo v zadachakh, Mir, M., 1970 | MR | MR | Zbl

[6] S. N. Lakaev, M. E. Muminov, TMF, 135:3 (2003), 478–503 | DOI | MR | Zbl