Soliton solutions of an integrable boundary problem on the half-line for the discrete Toda chain
Teoretičeskaâ i matematičeskaâ fizika, Tome 148 (2006) no. 3, pp. 387-397
Cet article a éte moissonné depuis la source Math-Net.Ru
We write formulas for soliton solutions of the discrete Toda chain and pose the integrable boundary value problem for this chain. We find conditions for the parameters {(}discrete spectrum points, transmission coefficients, and the corresponding factors{\rm)} whereby solutions of the integrable boundary value problem are selected from all soliton solutions. As a result, we construct two hierarchies of soliton solutions of the specified problem with even and odd soliton numbers and find an explicit form of the conditions for the parameters.
Keywords:
discrete Toda chain, integrable boundary value problem
Mots-clés : soliton.
Mots-clés : soliton.
@article{TMF_2006_148_3_a3,
author = {V. L. Vereshchagin},
title = {Soliton solutions of an integrable boundary problem on the half-line for the discrete {Toda} chain},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {387--397},
year = {2006},
volume = {148},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2006_148_3_a3/}
}
TY - JOUR AU - V. L. Vereshchagin TI - Soliton solutions of an integrable boundary problem on the half-line for the discrete Toda chain JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2006 SP - 387 EP - 397 VL - 148 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2006_148_3_a3/ LA - ru ID - TMF_2006_148_3_a3 ER -
V. L. Vereshchagin. Soliton solutions of an integrable boundary problem on the half-line for the discrete Toda chain. Teoretičeskaâ i matematičeskaâ fizika, Tome 148 (2006) no. 3, pp. 387-397. http://geodesic.mathdoc.fr/item/TMF_2006_148_3_a3/
[1] E. Date, M. Jimbo, T. Miwa, J. Phys. Soc. Japan, 51 (1982), 4116–4124 ; 4125–4131 ; 52 (1983), 761–765 ; 766–771 | DOI | MR | DOI | DOI | MR | Zbl | DOI
[2] Yu. B. Suris, Algebra i analiz, 2:2 (1990), 141–157 | MR | Zbl
[3] T. G. Kazakova, TMF, 138:3 (2004), 422–436 | DOI | MR
[4] Т. Г. Казакова Konechnomernye reduktsii diskretnykh sistem, Diss. ... kand. fiz.-matem. nauk, IM s VTs UNTs RAN, Ufa, 2005
[5] I. T. Habibullin, T. G. Kazakova, J. Phys. A, 34 (2001), 10369–10376 | DOI | MR | Zbl
[6] V. E. Zakharov, S. V. Manakov, S. P. Novikov, P. P. Pitaevskii, Teoriya solitonov. Metod obratnoi zadachi, Nauka, M., 1980 | MR | Zbl
[7] I. T. Khabibullin, TMF, 114:1 (1998), 115–125 | DOI | MR | Zbl