Soliton solutions of an integrable boundary problem on the half-line for the discrete Toda chain
Teoretičeskaâ i matematičeskaâ fizika, Tome 148 (2006) no. 3, pp. 387-397 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We write formulas for soliton solutions of the discrete Toda chain and pose the integrable boundary value problem for this chain. We find conditions for the parameters {(}discrete spectrum points, transmission coefficients, and the corresponding factors{\rm)} whereby solutions of the integrable boundary value problem are selected from all soliton solutions. As a result, we construct two hierarchies of soliton solutions of the specified problem with even and odd soliton numbers and find an explicit form of the conditions for the parameters.
Keywords: discrete Toda chain, integrable boundary value problem
Mots-clés : soliton.
@article{TMF_2006_148_3_a3,
     author = {V. L. Vereshchagin},
     title = {Soliton solutions of an integrable boundary problem on the half-line for the discrete {Toda} chain},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {387--397},
     year = {2006},
     volume = {148},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2006_148_3_a3/}
}
TY  - JOUR
AU  - V. L. Vereshchagin
TI  - Soliton solutions of an integrable boundary problem on the half-line for the discrete Toda chain
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2006
SP  - 387
EP  - 397
VL  - 148
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2006_148_3_a3/
LA  - ru
ID  - TMF_2006_148_3_a3
ER  - 
%0 Journal Article
%A V. L. Vereshchagin
%T Soliton solutions of an integrable boundary problem on the half-line for the discrete Toda chain
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2006
%P 387-397
%V 148
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2006_148_3_a3/
%G ru
%F TMF_2006_148_3_a3
V. L. Vereshchagin. Soliton solutions of an integrable boundary problem on the half-line for the discrete Toda chain. Teoretičeskaâ i matematičeskaâ fizika, Tome 148 (2006) no. 3, pp. 387-397. http://geodesic.mathdoc.fr/item/TMF_2006_148_3_a3/

[1] E. Date, M. Jimbo, T. Miwa, J. Phys. Soc. Japan, 51 (1982), 4116–4124 ; 4125–4131 ; 52 (1983), 761–765 ; 766–771 | DOI | MR | DOI | DOI | MR | Zbl | DOI

[2] Yu. B. Suris, Algebra i analiz, 2:2 (1990), 141–157 | MR | Zbl

[3] T. G. Kazakova, TMF, 138:3 (2004), 422–436 | DOI | MR

[4] Т. Г. Казакова Konechnomernye reduktsii diskretnykh sistem, Diss. ... kand. fiz.-matem. nauk, IM s VTs UNTs RAN, Ufa, 2005

[5] I. T. Habibullin, T. G. Kazakova, J. Phys. A, 34 (2001), 10369–10376 | DOI | MR | Zbl

[6] V. E. Zakharov, S. V. Manakov, S. P. Novikov, P. P. Pitaevskii, Teoriya solitonov. Metod obratnoi zadachi, Nauka, M., 1980 | MR | Zbl

[7] I. T. Khabibullin, TMF, 114:1 (1998), 115–125 | DOI | MR | Zbl