Enumerations of half-turn-symmetric alternating-sign matrices of odd order
Teoretičeskaâ i matematičeskaâ fizika, Tome 148 (2006) no. 3, pp. 357-386 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Kuperberg showed that the partition function of the square-ice model related to half-turn-symmetric alternating-sign matrices of even order is the product of two similar factors. We propose a square-ice model whose states are in bijective correspondence with half-turn-symmetric alternating-sign matrices of odd order. The partition function of this model is expressed via the above factors. We find the contributions to the partition function that correspond to the alternating-sign matrices having $1$ or $-1$ as the central entry and establish the related enumerations.
Keywords: alternating-sign matrices, enumerations, square-ice model.
@article{TMF_2006_148_3_a2,
     author = {A. V. Razumov and Yu. G. Stroganov},
     title = {Enumerations of half-turn-symmetric alternating-sign matrices of odd order},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {357--386},
     year = {2006},
     volume = {148},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2006_148_3_a2/}
}
TY  - JOUR
AU  - A. V. Razumov
AU  - Yu. G. Stroganov
TI  - Enumerations of half-turn-symmetric alternating-sign matrices of odd order
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2006
SP  - 357
EP  - 386
VL  - 148
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2006_148_3_a2/
LA  - ru
ID  - TMF_2006_148_3_a2
ER  - 
%0 Journal Article
%A A. V. Razumov
%A Yu. G. Stroganov
%T Enumerations of half-turn-symmetric alternating-sign matrices of odd order
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2006
%P 357-386
%V 148
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2006_148_3_a2/
%G ru
%F TMF_2006_148_3_a2
A. V. Razumov; Yu. G. Stroganov. Enumerations of half-turn-symmetric alternating-sign matrices of odd order. Teoretičeskaâ i matematičeskaâ fizika, Tome 148 (2006) no. 3, pp. 357-386. http://geodesic.mathdoc.fr/item/TMF_2006_148_3_a2/

[1] W. H. Mills, D. P. Robbins, H. Rumsey, Jr., Invent. Math., 66 (1982), 73–87 ; J. Combin. Theory Ser. A, 34 (1983), 340–359 | DOI | MR | Zbl | DOI | MR | Zbl

[2] G. Kuperberg, Int. Math. Res. Notices, 1996:3 (1996), 139–150 ; math.CO/9712207 | DOI | MR | Zbl

[3] G. Kuperberg, Ann. Math., 156 (2002), 835–866 ; math.CO/0008184 | DOI | MR | Zbl

[4] D. P. Robbins, Symmetry Classes of Alternating Sign Matrices, math.CO/0008045

[5] V. E. Korepin, Commun. Math. Phys., 86 (1982), 391–418 | DOI | MR | Zbl

[6] D. P. Robbins, H. Rumsey, Jr., Advances in Math., 62:2 (1986), 169–184 ; N. Elkies, G. Kuperberg, M. Larsen, J. Propp, J. Algebraic Combin., 1 (1992), 111–132 ; 219–234 ; math.CO/9201305 | DOI | MR | Zbl | DOI | MR | Zbl | MR | Zbl

[7] Yu. G. Stroganov, TMF, 146:1 (2006), 65–76 ; ; А. В. Разумов, Ю. Г. Строганов, ТМФ, 141:3 (2004), 323–347 ; math-ph/0204042math-ph/0312071 | DOI | MR | Zbl | DOI | MR | Zbl

[8] Yu. G. Stroganov, Izergin–Korepin determinant reloaded, math-ph/0409072

[9] S. Okada, J. Algebraic. Combin., 23 (2006), 43–69 ; math.CO/0408234 | DOI | MR | Zbl

[10] G. Kuperberg, E-mail message to private “domino” forum, 10/07/2004, private communication

[11] A. G. Izergin, DAN SSSR, 297 (1987), 331–333 ; V. E. Korepin, N. M. Bogoliubov, A. G. Izergin, Quantum Inverse Scattering Method, Correlation Functions and Algebraic Bethe Ansatz, 2nd ed., Cambridge University Press, Cambridge, 1993 | MR | Zbl | MR | Zbl

[12] D. Zeilberger, Elec. J. Comb., 3(2) (1996), R13 ; math.CO/9407211 | MR | Zbl

[13] D. Zeilberger, New York J. Math., 2 (1996), 59–68 ; math.CO/9606224 | MR | Zbl