The condensate $\langle\operatorname{tr}(A_\mu^2)\rangle$ in
Teoretičeskaâ i matematičeskaâ fizika, Tome 148 (2006) no. 3, pp. 350-356
Cet article a éte moissonné depuis la source Math-Net.Ru
We show that the gauge invariance of the operator$\int dx\,\operatorname{tr}(A_\mu^2- 2/(g\xi)x^\nu\theta_{\mu\nu}A^\mu)$ in a noncommutative gauge theory does not lead to the gauge independence of its vacuum condensate. We obtain the generalized Ward identities for Green's functions containing the operator $\lim_{\Omega\to\infty}(1/\Omega)\int_\Omega dx\,\operatorname{tr}(A_\mu^2)$ in commutative and noncommutative gauge theories.
Keywords:
vacuum condensates, noncommutative field theory, quantum chromodynamics
Mots-clés : confinement phase.
Mots-clés : confinement phase.
@article{TMF_2006_148_3_a1,
author = {R. N. Baranov and D. V. Bykov and A. A. Slavnov},
title = {The condensate $\langle\operatorname{tr}(A_\mu^2)\rangle$ in},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {350--356},
year = {2006},
volume = {148},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2006_148_3_a1/}
}
TY - JOUR
AU - R. N. Baranov
AU - D. V. Bykov
AU - A. A. Slavnov
TI - The condensate $\langle\operatorname{tr}(A_\mu^2)\rangle$ in
JO - Teoretičeskaâ i matematičeskaâ fizika
PY - 2006
SP - 350
EP - 356
VL - 148
IS - 3
UR - http://geodesic.mathdoc.fr/item/TMF_2006_148_3_a1/
LA - ru
ID - TMF_2006_148_3_a1
ER -
R. N. Baranov; D. V. Bykov; A. A. Slavnov. The condensate $\langle\operatorname{tr}(A_\mu^2)\rangle$ in. Teoretičeskaâ i matematičeskaâ fizika, Tome 148 (2006) no. 3, pp. 350-356. http://geodesic.mathdoc.fr/item/TMF_2006_148_3_a1/
[1] F. V. Gubarev, L. Stodolsky, V. I. Zakharov, Phys. Rev. Lett, 86 (2001), 2220 | DOI
[2] A. A. Slavnov, Phys. Lett. B, 608 (2005), 171 | DOI | MR | Zbl
[3] M. Douglas, N. Nekrasov, Rev. Mod. Phys., 73 (2001), 977 | DOI | MR | Zbl
[4] D. V. Bykov, A. A. Slavnov, TMF, 145:2 (2005), 147 | DOI | MR | Zbl