Two-dimensional problem of two Coulomb centers at small intercenter distances
Teoretičeskaâ i matematičeskaâ fizika, Tome 148 (2006) no. 2, pp. 269-287 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We use analytic methods to analyze the discrete spectrum for the problem $(Z_1eZ_2)_2$ in the united-atom limit $(R\ll1)$ and obtain asymptotic expansions for the quantum defect and energy terms of the system $(Z_1eZ_2)_2$ at small intercenter distances $R$ up to terms of the order $O(R^6)$. We investigate the effect of the dimensionality factor on the energy spectrum of the hydrogen molecular ion H$^+_2$.
Keywords: planar problem of two Coulomb centers, boundary layer phenomena
Mots-clés : confluent Heun equation, Mathieu functions, Ince equation.
@article{TMF_2006_148_2_a7,
     author = {D. I. Bondar and M. Gnatich and V. Yu. Lazur},
     title = {Two-dimensional problem of two {Coulomb} centers at small intercenter distances},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {269--287},
     year = {2006},
     volume = {148},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2006_148_2_a7/}
}
TY  - JOUR
AU  - D. I. Bondar
AU  - M. Gnatich
AU  - V. Yu. Lazur
TI  - Two-dimensional problem of two Coulomb centers at small intercenter distances
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2006
SP  - 269
EP  - 287
VL  - 148
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2006_148_2_a7/
LA  - ru
ID  - TMF_2006_148_2_a7
ER  - 
%0 Journal Article
%A D. I. Bondar
%A M. Gnatich
%A V. Yu. Lazur
%T Two-dimensional problem of two Coulomb centers at small intercenter distances
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2006
%P 269-287
%V 148
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2006_148_2_a7/
%G ru
%F TMF_2006_148_2_a7
D. I. Bondar; M. Gnatich; V. Yu. Lazur. Two-dimensional problem of two Coulomb centers at small intercenter distances. Teoretičeskaâ i matematičeskaâ fizika, Tome 148 (2006) no. 2, pp. 269-287. http://geodesic.mathdoc.fr/item/TMF_2006_148_2_a7/

[1] S. Yu. Slavyanov, W. Lay, Special Functions: A Unified Theory Based on Singularities, Oxford University Press, N.Y., 2000 | MR | Zbl

[2] A. Ishkhanyan, J. Phys. A, 38 (2005), L491 ; E. S. Cheb-Terrab, J. Phys. A, 37 (2004), 9923 | DOI | MR | Zbl | DOI | MR | Zbl

[3] B. Zaslow, M. E. Zandler, Amer. J. Phys., 35 (1967), 1118 ; A. Cisneros, H. V. McIntosh, J. Math. Phys., 10 (1969), 277 | DOI | DOI

[4] L. G. Mardoyan, G. S. Pogosyan, A. N. Sisakyan, V. M. Ter-Antonyan, TMF, 61 (1984), 99 | MR

[5] L. G. Mardoyan, G. S. Pogosyan, A. N. Sissakian, V. M. Ter-Antonyan, J. Phys. A, 18 (1985), 455 | DOI | MR

[6] A. Ya. Shik, L. G. Bakueva, S. F. Musikhin, S. A. Rykov, Fizika nizkorazmernykh sistem, Nauka, SPb., 2001 | Zbl

[7] N. F. Truskova, YaF, 36 (1982), 790 | MR

[8] A. S. Davydov, Phys. Rep., 190 (1990), 191 | DOI | Zbl

[9] M. Fabbri, A. F. da Silva, Phys. Rev. A, 32 (1985), 1870 | DOI

[10] I. V. Komarov, L. I. Ponomarev, S. Yu. Slavyanov, Sferoidalnye i kulonovskie sferoidalnye funktsii, Nauka, M., 1976 | MR | Zbl

[11] D. I. Abramov, S. Yu. Slavyanov, J. Phys. B, 11 (1978), 2229 | DOI

[12] W. Lay, S. Yu. Slavyanov, Proc. Roy. Soc. London A, 455 (1999), 4347 | DOI | MR | Zbl

[13] M. Abramovits, L. Stigan, Spravochnik po spetsialnym funktsiyam s formulami, grafikami i matematicheskimi tablitsami, Nauka, M., 1979 | MR | MR | Zbl

[14] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, Nauka, M., 1967 | MR | MR | Zbl

[15] F. M. Arscott, Proc. Roy. Soc. Edinburgh A, 67 (1967), 265 | MR | Zbl

[16] P. J. Greenland, W. Greiner, Theor. Chem. Acta, 42 (1976), 273 | DOI