Classical and quantum integrability of Hamiltonians without scattering states
Teoretičeskaâ i matematičeskaâ fizika, Tome 148 (2006) no. 2, pp. 249-268

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish that every quantum Hamiltonian without scattering states has a complete family of conserved quantities independently of the dimension of the system. This result leads to a comparison of the general properties of classical and quantum integrable systems. We discuss several relevant examples and an application to the statistical distribution of energies. As a spin-off, we obtain additional support for the Berry–Tabor conjecture without taking the semiclassical limit into account.
Keywords: quantum mechanics, integrability, spectral theory, Berry–Tabor conjecture.
@article{TMF_2006_148_2_a6,
     author = {A. Enciso and D. Peralta-Salas},
     title = {Classical and quantum integrability of {Hamiltonians} without scattering states},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {249--268},
     publisher = {mathdoc},
     volume = {148},
     number = {2},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2006_148_2_a6/}
}
TY  - JOUR
AU  - A. Enciso
AU  - D. Peralta-Salas
TI  - Classical and quantum integrability of Hamiltonians without scattering states
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2006
SP  - 249
EP  - 268
VL  - 148
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2006_148_2_a6/
LA  - ru
ID  - TMF_2006_148_2_a6
ER  - 
%0 Journal Article
%A A. Enciso
%A D. Peralta-Salas
%T Classical and quantum integrability of Hamiltonians without scattering states
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2006
%P 249-268
%V 148
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2006_148_2_a6/
%G ru
%F TMF_2006_148_2_a6
A. Enciso; D. Peralta-Salas. Classical and quantum integrability of Hamiltonians without scattering states. Teoretičeskaâ i matematičeskaâ fizika, Tome 148 (2006) no. 2, pp. 249-268. http://geodesic.mathdoc.fr/item/TMF_2006_148_2_a6/