Classical and quantum integrability of Hamiltonians without scattering states
Teoretičeskaâ i matematičeskaâ fizika, Tome 148 (2006) no. 2, pp. 249-268 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We establish that every quantum Hamiltonian without scattering states has a complete family of conserved quantities independently of the dimension of the system. This result leads to a comparison of the general properties of classical and quantum integrable systems. We discuss several relevant examples and an application to the statistical distribution of energies. As a spin-off, we obtain additional support for the Berry–Tabor conjecture without taking the semiclassical limit into account.
Keywords: quantum mechanics, integrability, spectral theory, Berry–Tabor conjecture.
@article{TMF_2006_148_2_a6,
     author = {A. Enciso and D. Peralta-Salas},
     title = {Classical and quantum integrability of {Hamiltonians} without scattering states},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {249--268},
     year = {2006},
     volume = {148},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2006_148_2_a6/}
}
TY  - JOUR
AU  - A. Enciso
AU  - D. Peralta-Salas
TI  - Classical and quantum integrability of Hamiltonians without scattering states
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2006
SP  - 249
EP  - 268
VL  - 148
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2006_148_2_a6/
LA  - ru
ID  - TMF_2006_148_2_a6
ER  - 
%0 Journal Article
%A A. Enciso
%A D. Peralta-Salas
%T Classical and quantum integrability of Hamiltonians without scattering states
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2006
%P 249-268
%V 148
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2006_148_2_a6/
%G ru
%F TMF_2006_148_2_a6
A. Enciso; D. Peralta-Salas. Classical and quantum integrability of Hamiltonians without scattering states. Teoretičeskaâ i matematičeskaâ fizika, Tome 148 (2006) no. 2, pp. 249-268. http://geodesic.mathdoc.fr/item/TMF_2006_148_2_a6/

[1] M. A. Olshanetsky, A. M. Perelomov, Phys. Rep., 94 (1983), 313 ; A. V. Turbiner, Commun. Math. Phys., 118 (1988), 467 | DOI | MR | DOI | MR | Zbl

[2] G. Casati, F. Valz-Gris, I. Guarnieri, Lett. Nuovo Cimento, 28 (1980), 279 ; O. Bohigas, M. J. Giannoni, C. Schmit, Phys. Rev. Lett., 52 (1984), 1 | DOI | MR | DOI | MR | Zbl

[3] S. Weigert, Phys. D, 56 (1992), 107 | DOI | MR

[4] I. Neiman, Matematicheskie osnovy kvantovoi mekhaniki, Nauka, M., 1964 | MR | Zbl

[5] Y. Colin de Verdière, Enseign. Math., 44 (1998), 23 | MR | Zbl

[6] S. Weigert, G. Müller, Chaos, Solitons Fractals, 5 (1995), 1419 | DOI | MR | Zbl

[7] M. Moshinsky, T. H. Seligman, Ann. Physics, 114 (1978), 243 ; J. Deenen, M. Moshinsky, T. H. Seligman, Ann. Phys., 127 (1980), 458 | DOI | MR | Zbl | DOI | MR | Zbl

[8] P. Crehan, J. Phys. A, 28 (1995), 6389 | DOI | MR | Zbl

[9] A. Relaño, J. Dukelsky, J. M. Gómez, J. Retamosa, Phys. Rev. E, 70 (2004), 026208 | DOI

[10] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, t. 1, Mir, M., 1977 | MR | MR | Zbl

[11] W. Thirring, Quantum Mathematical Physics, Springer, Berlin, 2002 | MR

[12] S. N. Naboko, TMF, 68:1 (1986), 18 ; С. Н. Набоко, А. Б. Пушницкий, Функц. анализ и его прилож., 29:4 (1995), 31 | MR | Zbl | MR | Zbl

[13] B. Simon, Proc. Amer. Math. Soc., 125 (1997), 203 | DOI | MR | Zbl

[14] L. Markus, K. R. Meyer, Mem. Amer. Math. Soc., 144, 1974 | MR | Zbl

[15] M. V. Berry, Proc. R. Soc. London A, 400 (1985), 229 | DOI | MR | Zbl

[16] L. Benet, F. Leyvraz, T. H. Seligman, Phys. Rev. E, 68 (2003), 045201(R) | DOI

[17] V. S. Matveev, P. J. Topalov, Math. Z., 238 (2001), 833 | DOI | MR | Zbl

[18] D. V. Anosov, Tr. MIAN, 90, 1967 | MR | Zbl

[19] F. E. Browder, Math. Ann., 142 (1961), 22 | DOI | MR | Zbl

[20] M. E. Sansaturio, I. Yigo-Aguiar, J. M. Ferrándiz, J. Phys. A, 30 (1997), 5869 | DOI | MR | Zbl

[21] M. del Mar Espinosa, M. A. Martín-Delgado, A. Niella, D. Páramo, J. Rodríguez-Laguna, Chaos in the classical analogue of the Hofstadter problem, chao-dyn/9808012

[22] A. Ramani, B. Grammaticos, T. Bountis, Phys. Rep., 180:3 (1989), 159 | DOI | MR

[23] B. Simon, Ann. Phys., 146 (1983), 209 | DOI | MR | Zbl

[24] H. Yoshida, Phys. D, 29 (1987), 128 | DOI | MR | Zbl

[25] A. Enciso, F. Finkel, A. González-López, M. A. Rodríguez, Nucl. Phys. B, 707 (2005), 553 ; ; J. Nonlin. Math. Phys., 12 (2003), 253 ; hep-th/0406054hep-th/0412098 | DOI | MR | Zbl | Zbl | DOI | MR

[26] W. M. Zhang, D. H. Feng, J.-M. Yuan, S.-J. Wang, Phys. Rev. A, 40 (1989), 438 | DOI | MR

[27] L. Kaplan, New J. Phys., 4 (2002), 90 | DOI | MR

[28] M. V. Berry, M. Tabor, Proc. R. Soc. Lond. A, 356 (1977), 375 | DOI | Zbl

[29] M. Razavy, Phys. Lett. A, 113 (1985), 297 ; T. H. Seligman, J. J. Verbaarschot, Phys. Rev. Lett., 56 (1986), 2767 | DOI | DOI | MR

[30] J. Marklof, Ann. of Math., 158 (2003), 419 | DOI | MR | Zbl

[31] G. Helmberg, Math. Z., 86 (1964), 157 | DOI | MR | Zbl

[32] J. Lesca, Enseign. Math., 17 (1971), 311 | MR | Zbl

[33] L. Kuipers, H. Niederreiter, Uniform Distribution of Sequences, Wiley, N.Y., 1974 | MR | Zbl

[34] A. Pandey, R. Ramaswamy, Phys. Rev. A, 43 (1991), 4237 | DOI | MR

[35] M. C. Gutzwiller, Chaos in Classical and Quantum Mechanics, Springer, N.Y., 1990 | MR | Zbl

[36] C. F. Porter, Statistical Theory of Spectra: Fluctuations, Academic Press, London, 1965

[37] B. A. Kupershmidt, Phys. Lett. A, 109 (1985), 136 | DOI | MR

[38] R. Cirelli, L. Pizzocchero, Nonlinearity, 3 (1990), 1057 | DOI | MR | Zbl

[39] D. R. Hofstadter, Phys. Rev. B, 14 (1976), 2239 | DOI

[40] W. Rudin, Real and Complex Analysis, McGraw-Hill, N.Y., 1966 | MR | Zbl