Exact axially symmetric wave solutions of the Yang–Mills equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 148 (2006) no. 2, pp. 243-248
Cet article a éte moissonné depuis la source Math-Net.Ru
We find a class of exact axially symmetric wave solutions of the Yang–Mills equations with $SU(2)$ symmetry. The solutions in this class describe running waves propagating at the speed of light in a vacuum and contain two arbitrary differentiable functions of their phase. We consider properties of field sources that can generate such running waves.
Keywords:
Yang–Mills equations, Yang–Mills field potentials, $SU(2)$ symmetry, axially symmetric wave solutions.
@article{TMF_2006_148_2_a5,
author = {A. S. Rabinovich},
title = {Exact axially symmetric wave solutions of the {Yang{\textendash}Mills} equations},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {243--248},
year = {2006},
volume = {148},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2006_148_2_a5/}
}
A. S. Rabinovich. Exact axially symmetric wave solutions of the Yang–Mills equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 148 (2006) no. 2, pp. 243-248. http://geodesic.mathdoc.fr/item/TMF_2006_148_2_a5/
[1] L. Raider, Kvantovaya teoriya polya, Mir, M., 1987 ; Н. Ф. Нелипа, Физика элементарных частиц. Калибровочные поля, Высшая школа, М., 1985 | MR | Zbl | MR
[2] A. A. Slavnov, L. D. Faddeev, Vvedenie v kvantovuyu teoriyu kalibrovochnykh polei, Nauka, M., 1988 ; A. S. Rabinowitch, Int. J. Theor. Phys., 39 (2000), 2447 | MR | Zbl | DOI
[3] G. 't Hooft, Nucl. Phys. B, 79 (1974), 276 ; А. М. Поляков, Письма в ЖЭТФ, 20 (1974), 430; Р. Додд, Дж. Эйлбек, Дж Гиббон, Х. Моррис, Солитоны и нелинейные волновые уравнения, Мир, М., 1988 ; A. S. Rabinowitch, Russ. J. Math. Phys., 12 (2005), 379 | DOI | MR | MR | Zbl | MR | Zbl