Quantized Riemann surfaces and semiclassical spectral series for a non-self-adjoint Schr\"odinger operator with periodic coefficients
Teoretičeskaâ i matematičeskaâ fizika, Tome 148 (2006) no. 2, pp. 206-226
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a non-self-adjoint Schrödinger operator describing the motion
of a particle in a one-dimensional space with an analytic potential $iV(x)$
that is periodic with a real period $T$ and is purely imaginary on the real
axis. We study the spectrum of this operator in the semiclassical limit and
show that the points of its spectrum asymptotically belong to the so-called
spectral graph. We construct the spectral graph and evaluate the asymptotic
form of the spectrum. A Riemann surface of the particle energy-conservation
equation can be constructed in the phase space. We show that both the spectral
graph and the asymptotic form of the spectrum can be evaluated in
terms of integrals of the $p\,dx$ form (where $x\in\mathbb C/T\mathbb Z$ and
$p\in\mathbb C$ are the particle coordinate and momentum) taken along basis cycles on
this Riemann surface. We use the technique of Stokes lines to construct the asymptotic
form of the spectrum.
Keywords:
spectrum, spectral graph, non-self-adjoint operator, Schrödinger operator, Stokes lines.
@article{TMF_2006_148_2_a3,
author = {S. V. Galtsev and A. I. Shafarevich},
title = {Quantized {Riemann} surfaces and semiclassical spectral series for a non-self-adjoint {Schr\"odinger} operator with periodic coefficients},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {206--226},
publisher = {mathdoc},
volume = {148},
number = {2},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2006_148_2_a3/}
}
TY - JOUR AU - S. V. Galtsev AU - A. I. Shafarevich TI - Quantized Riemann surfaces and semiclassical spectral series for a non-self-adjoint Schr\"odinger operator with periodic coefficients JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2006 SP - 206 EP - 226 VL - 148 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2006_148_2_a3/ LA - ru ID - TMF_2006_148_2_a3 ER -
%0 Journal Article %A S. V. Galtsev %A A. I. Shafarevich %T Quantized Riemann surfaces and semiclassical spectral series for a non-self-adjoint Schr\"odinger operator with periodic coefficients %J Teoretičeskaâ i matematičeskaâ fizika %D 2006 %P 206-226 %V 148 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_2006_148_2_a3/ %G ru %F TMF_2006_148_2_a3
S. V. Galtsev; A. I. Shafarevich. Quantized Riemann surfaces and semiclassical spectral series for a non-self-adjoint Schr\"odinger operator with periodic coefficients. Teoretičeskaâ i matematičeskaâ fizika, Tome 148 (2006) no. 2, pp. 206-226. http://geodesic.mathdoc.fr/item/TMF_2006_148_2_a3/