@article{TMF_2006_148_2_a3,
author = {S. V. Galtsev and A. I. Shafarevich},
title = {Quantized {Riemann} surfaces and semiclassical spectral series for a non-self-adjoint {Schr\"odinger} operator with periodic coefficients},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {206--226},
year = {2006},
volume = {148},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2006_148_2_a3/}
}
TY - JOUR AU - S. V. Galtsev AU - A. I. Shafarevich TI - Quantized Riemann surfaces and semiclassical spectral series for a non-self-adjoint Schrödinger operator with periodic coefficients JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2006 SP - 206 EP - 226 VL - 148 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2006_148_2_a3/ LA - ru ID - TMF_2006_148_2_a3 ER -
%0 Journal Article %A S. V. Galtsev %A A. I. Shafarevich %T Quantized Riemann surfaces and semiclassical spectral series for a non-self-adjoint Schrödinger operator with periodic coefficients %J Teoretičeskaâ i matematičeskaâ fizika %D 2006 %P 206-226 %V 148 %N 2 %U http://geodesic.mathdoc.fr/item/TMF_2006_148_2_a3/ %G ru %F TMF_2006_148_2_a3
S. V. Galtsev; A. I. Shafarevich. Quantized Riemann surfaces and semiclassical spectral series for a non-self-adjoint Schrödinger operator with periodic coefficients. Teoretičeskaâ i matematičeskaâ fizika, Tome 148 (2006) no. 2, pp. 206-226. http://geodesic.mathdoc.fr/item/TMF_2006_148_2_a3/
[1] I. Ts. Gokhberg, M. G. Krein, Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov, Nauka, M., 1965 | MR | Zbl
[2] Ya. B. Zeldovich, A. A. Ruzmaikin, UFN, 152:2 (1987), 263–284 | DOI
[3] R. G. Drazin, W. H. Reid, Hydrodynamic Stability, Cambridge Univ. Press, Cambridge, 1981 | MR | Zbl
[4] V. P. Maslov, Teoriya vozmuschenii i asimptoticheskie metody, Izd-vo MGU, M., 1965 ; Асимптотические методы решения псевдодифференциальных уравнений, Наука, М., 1987 | MR | MR | Zbl
[5] S. Yu. Dobrokhotov, V. N. Kolokoltsov, V. Martinez Olive, Sobretiro de Socieded Matematica Mexicana, 11 (1994), 81–89 ; С. Ю. Доброхотов, В. Н. Колокольцов, В. Мартинес Оливе, Матем. заметки, 58:2 (1995), 301–306 | MR | Zbl | MR | Zbl
[6] L. N. Trefethen, “Pseudospectra of linear operators”, ISIAM 95: Proc. of the Third Int. Congress of Industrial and Applied Math. (Hamburg, Germany, July 3–7, 1995), Math. Res., 87, eds. K. Kirchgässner, O. Mahrenholtz, R. Mennicken, Akademie-Verlag, Berlin, 1996, 401–434 ; E. B. Davies, J. Oper. Theory, 43 (2000), 243–262 | MR | Zbl | MR | Zbl
[7] S. A. Stepin, Matem. sb., 188 (1997), 129–146 ; С. А. Степин, А. А. Аржанов, УМН, 57:3 (2002), 161–162 ; А. А. Шкаликов, Матем. заметки, 62:6 (1997), 950–953 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl
[8] S. N. Tumanov, A. A. Shkalikov, Izv. RAN, Ser. matem., 66:4 (2002), 177–204 | DOI | MR | Zbl
[9] Yu. N. Dnestrovskii, D. P. Kostomarov, DAN SSSR, 152:1 (1963), 28–30 | MR | Zbl
[10] M. V. Fedoryuk, Izv. AN SSSR, Ser. matem., 29:3 (1965), 645–656 | MR | Zbl
[11] M. A. Evgrafov, M. V. Fedoryuk, UMN, 21:1 (1966), 3–50 | MR | Zbl