Quantized Riemann surfaces and semiclassical spectral series for a non-self-adjoint Schr\"odinger operator with periodic coefficients
Teoretičeskaâ i matematičeskaâ fizika, Tome 148 (2006) no. 2, pp. 206-226

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a non-self-adjoint Schrödinger operator describing the motion of a particle in a one-dimensional space with an analytic potential $iV(x)$ that is periodic with a real period $T$ and is purely imaginary on the real axis. We study the spectrum of this operator in the semiclassical limit and show that the points of its spectrum asymptotically belong to the so-called spectral graph. We construct the spectral graph and evaluate the asymptotic form of the spectrum. A Riemann surface of the particle energy-conservation equation can be constructed in the phase space. We show that both the spectral graph and the asymptotic form of the spectrum can be evaluated in terms of integrals of the $p\,dx$ form (where $x\in\mathbb C/T\mathbb Z$ and $p\in\mathbb C$ are the particle coordinate and momentum) taken along basis cycles on this Riemann surface. We use the technique of Stokes lines to construct the asymptotic form of the spectrum.
Keywords: spectrum, spectral graph, non-self-adjoint operator, Schrödinger operator, Stokes lines.
@article{TMF_2006_148_2_a3,
     author = {S. V. Galtsev and A. I. Shafarevich},
     title = {Quantized {Riemann} surfaces and semiclassical spectral series for a non-self-adjoint {Schr\"odinger} operator with periodic coefficients},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {206--226},
     publisher = {mathdoc},
     volume = {148},
     number = {2},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2006_148_2_a3/}
}
TY  - JOUR
AU  - S. V. Galtsev
AU  - A. I. Shafarevich
TI  - Quantized Riemann surfaces and semiclassical spectral series for a non-self-adjoint Schr\"odinger operator with periodic coefficients
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2006
SP  - 206
EP  - 226
VL  - 148
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2006_148_2_a3/
LA  - ru
ID  - TMF_2006_148_2_a3
ER  - 
%0 Journal Article
%A S. V. Galtsev
%A A. I. Shafarevich
%T Quantized Riemann surfaces and semiclassical spectral series for a non-self-adjoint Schr\"odinger operator with periodic coefficients
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2006
%P 206-226
%V 148
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2006_148_2_a3/
%G ru
%F TMF_2006_148_2_a3
S. V. Galtsev; A. I. Shafarevich. Quantized Riemann surfaces and semiclassical spectral series for a non-self-adjoint Schr\"odinger operator with periodic coefficients. Teoretičeskaâ i matematičeskaâ fizika, Tome 148 (2006) no. 2, pp. 206-226. http://geodesic.mathdoc.fr/item/TMF_2006_148_2_a3/