Lax representations for triplets of two-dimensional scalar fields of the chiral type
Teoretičeskaâ i matematičeskaâ fizika, Tome 148 (2006) no. 2, pp. 189-205 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider two-dimensional relativistically invariant systems with a three-dimensional reducible configuration space and a chiral-type Lagrangian that admit higher symmetries given by polynomials in derivatives up to the fifth order. Nine such systems are known: two are Liouville-type systems, and zero-curvature representations for two others have previously been found. We here give zero-curvature representations for the remaining five systems. We show how infinite series of conservation laws can be derived from the established zero-curvature representations. We give the simplest higher symmetries; others can be constructed from the conserved densities using the Hamiltonian operator. We find scalar formulations of the spectral problems.
Keywords: zero-curvature representations, higher symmetries, conservation laws.
@article{TMF_2006_148_2_a2,
     author = {D. K. Demskoi and V. G. Marikhin and A. G. Meshkov},
     title = {Lax representations for triplets of two-dimensional scalar fields of the chiral type},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {189--205},
     year = {2006},
     volume = {148},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2006_148_2_a2/}
}
TY  - JOUR
AU  - D. K. Demskoi
AU  - V. G. Marikhin
AU  - A. G. Meshkov
TI  - Lax representations for triplets of two-dimensional scalar fields of the chiral type
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2006
SP  - 189
EP  - 205
VL  - 148
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2006_148_2_a2/
LA  - ru
ID  - TMF_2006_148_2_a2
ER  - 
%0 Journal Article
%A D. K. Demskoi
%A V. G. Marikhin
%A A. G. Meshkov
%T Lax representations for triplets of two-dimensional scalar fields of the chiral type
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2006
%P 189-205
%V 148
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2006_148_2_a2/
%G ru
%F TMF_2006_148_2_a2
D. K. Demskoi; V. G. Marikhin; A. G. Meshkov. Lax representations for triplets of two-dimensional scalar fields of the chiral type. Teoretičeskaâ i matematičeskaâ fizika, Tome 148 (2006) no. 2, pp. 189-205. http://geodesic.mathdoc.fr/item/TMF_2006_148_2_a2/

[1] D. K. Demskoi, A. G. Meshkov, “New integrable string-like fields in $1+1$ dimensions”, Proc. Second Int. Conf. Quantum Field Theory and Gravity (July 28 – August 2, 1997. Tomsk, Russia), eds. I. L. Bukhbinder, K. E. Osetrin, Tomsk Pedagogical University, Tomsk, 1998, 282–285

[2] D. K. Demskoi, A. G. Meshkov, TMF, 134:3 (2003), 401–415 | DOI | MR | Zbl

[3] D. K. Demskoi, A. G. Meshkov, Inverse Problems, 19 (2003), 563–571 | DOI | MR | Zbl

[4] S. C. Anco, T. Wolf, J. Nonlinear Math. Phys., 12. Suppl. 1 (2005), 13–31 | DOI | MR

[5] D. K. Demskoi, TMF, 141:2 (2004), 208–227 | DOI | MR | Zbl

[6] N. N. Bogolyubov, D. V. Shirkov, Vvedenie v teoriyu kvantovannykh polei, Nauka, M., 1976 | MR | Zbl

[7] N. Yajima, M. Oikawa, Progr. Theor. Phys., 56 (1976), 1719–1739 | DOI | MR | Zbl

[8] B. Fuchssteiner, A. S. Focas, Physica D, 4:1 (1981), 47–66 ; M. Antonowicz, A. P. Fordy, “Hamiltonian structure of nonlinear evolution equations”, Soliton theory: Surveys of Results, Nonlinear Sci. Theory Appl., ed. A. P. Fordy, Manchester Univ. Press, Manchester, 1990, 273–312 | DOI | MR | Zbl | MR

[9] A. G. Meshkov, “Kovariantnye svoistva operatorov Niienkheisa i gamiltonovykh operatorov”, Sovremennyi gruppovoi analiz: Metody i prilozheniya. Nekotorye zadachi sovremennoi fiziki, Preprint No 116, Leningradskii institut informatiki i avtomatizatsii AN SSSR, Leningrad, 1990, 9–14

[10] H. D. Wahlquist, F. B. Estabrook, J. Math. Phys., 16 (1975), 1–7 ; 17 (1976), 1293–1297 | DOI | MR | Zbl | DOI | MR | Zbl

[11] J. Corones, J. Math. Phys., 17:5 (1976), 756–759 ; 18:1 (1977), 163–164 | DOI | MR | Zbl | DOI | MR

[12] J. M. Alberty, T. Koikawa, R. Sasaki, Physica D, 5:1 (1982), 43–65 | DOI | MR | Zbl

[13] H. H. Chen, Y. C. Lee, C. S. Liu, Phys. Scripta, 20:3–4 (1979), 490–492 | DOI | MR | Zbl

[14] A. G. Meshkov, Inverse Problems, 10 (1994), 635–653 | DOI | MR | Zbl