Nonlocal theory of surface tension in simple liquids
Teoretičeskaâ i matematičeskaâ fizika, Tome 148 (2006) no. 2, pp. 323-336 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a method for singling out the surface contribution in the form of a nonlocal functional of the transition-layer structure function from the general expression for the thermodynamic potential of the two-phase liquid–vapor system. A possibility of using the relation between the thermodynamic potentials of equilibrium volumetric and surface phases to modify the resulting expansion is indicated. We obtain an analogue of Euler's first integral in the variational problem for the surface-energy functional and give some estimates for the parameters characterizing the surface layer and its asymptotic properties.
Keywords: phase equilibrium, structure function, correlation functions, thermodynamic potential.
Mots-clés : surface tension
@article{TMF_2006_148_2_a11,
     author = {\'E. A. Arinstein},
     title = {Nonlocal theory of surface tension in simple liquids},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {323--336},
     year = {2006},
     volume = {148},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2006_148_2_a11/}
}
TY  - JOUR
AU  - É. A. Arinstein
TI  - Nonlocal theory of surface tension in simple liquids
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2006
SP  - 323
EP  - 336
VL  - 148
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2006_148_2_a11/
LA  - ru
ID  - TMF_2006_148_2_a11
ER  - 
%0 Journal Article
%A É. A. Arinstein
%T Nonlocal theory of surface tension in simple liquids
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2006
%P 323-336
%V 148
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2006_148_2_a11/
%G ru
%F TMF_2006_148_2_a11
É. A. Arinstein. Nonlocal theory of surface tension in simple liquids. Teoretičeskaâ i matematičeskaâ fizika, Tome 148 (2006) no. 2, pp. 323-336. http://geodesic.mathdoc.fr/item/TMF_2006_148_2_a11/

[1] S. Ono, S. Kondo, Molekulyarnaya teoriya poverkhnostnogo natyazheniya v zhidkostyakh, IL, M., 1963 ; К. Крокстон, Физика жидкого состояния. Статистическое введение, Мир, М., 1978 | Zbl

[2] N. N. Bogolyubov, Kvazisrednie v zadachakh statisticheskoi mekhaniki. Izbrannye trudy, t. 3, Naukova dumka, Kiev, 1971 | MR | Zbl

[3] E. A. Arinshtein, TMF, 124:1 (2000), 136–147 ; 141:1 (2004), 152–160 | DOI | MR | Zbl | DOI | MR | Zbl

[4] N. N. Bogolyubov, Metod funktsionalnykh proizvodnykh v statisticheskoi mekhanike. Izbrannye trudy, t. 2, Naukova dumka, Kiev, 1970 | Zbl

[5] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika. T. V. Statisticheskaya fizika, Nauka, M., 1976 | MR | Zbl

[6] R. Balesku, Ravnovesnaya i neravnovesnaya statisticheskaya mekhanika, t. 1, Mir, M., 1978 | MR | MR | Zbl

[7] E. Grei, G. B. Metyuz, Funktsii Besselya i ikh prilozheniya k fizike i mekhanike, IL, M., 1953 | MR | Zbl

[8] E. A. Arinshtein, “Molekulyarnaya teoriya poverkhnostnogo natyazheniya prostykh zhidkostei”, Problemy statisticheskoi fiziki, Trudy Tyumenskogo gosudarstvennogo universiteta. Vyp. 2, ed. E. A. Arinshtein, Izd-vo Tyumenskogo GU, Tyumen, 1979, 73–87

[9] F. M. Kuni, A. I. Rusanov, “Mikroskopicheskaya teoriya dispersionnykh vzaimodeistvii v kapillyarnykh sistemakh”, Sovremennaya teoriya kapillyarnosti (k 100-letiyu teorii kapillyarnosti Gibbsa), eds. A. I. Rusanov, F. Ch. Gudrich, Khimiya, Leningrad, 1980, 162–213

[10] P. Egelstaf, Dzh. Ring, “Eksperimentalnye dannye v kriticheskoi oblasti”, Fizika prostykh zhidkostei, t. 2, eds. G. Temperli, Dzh. Roulinson, Dzh. Rashbruk, Mir, M., 1973, 231–274