Nonlocal theory of surface tension in simple liquids
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 148 (2006) no. 2, pp. 323-336
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We consider a method for singling out the surface contribution in the form of
a nonlocal functional of the transition-layer structure function from the
general expression for the thermodynamic potential of the two-phase
liquid–vapor system. A possibility of using the relation between 
the thermodynamic potentials of equilibrium volumetric and surface phases to
modify the resulting expansion is indicated. We obtain an analogue of Euler's
first integral in the variational problem for the surface-energy functional
and give some estimates for the parameters characterizing the surface layer
and its asymptotic properties.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
phase equilibrium, structure function, correlation functions, thermodynamic potential.
Mots-clés : surface tension
                    
                  
                
                
                Mots-clés : surface tension
@article{TMF_2006_148_2_a11,
     author = {\'E. A. Arinstein},
     title = {Nonlocal theory of surface tension in simple liquids},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {323--336},
     publisher = {mathdoc},
     volume = {148},
     number = {2},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2006_148_2_a11/}
}
                      
                      
                    É. A. Arinstein. Nonlocal theory of surface tension in simple liquids. Teoretičeskaâ i matematičeskaâ fizika, Tome 148 (2006) no. 2, pp. 323-336. http://geodesic.mathdoc.fr/item/TMF_2006_148_2_a11/
