Spectra of infinite-dimensional sample covariance matrices
Teoretičeskaâ i matematičeskaâ fizika, Tome 148 (2006) no. 2, pp. 309-322 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study spectral functions of infinite-dimensional random Gram matrices of the form $RR^{\mathrm{T}}$, where $R$ is a rectangular matrix with an infinite number of rows and with the number of columns $N\to\infty$, and the spectral functions of infinite sample covariance matrices calculated for samples of volume $N\to\infty$ under conditions analogous to the Kolmogorov asymptotic conditions. We assume that the traces $d$ of the expectations of these matrices increase with the number $N$ such that the ratio $d/N$ tends to a constant. We find the limiting nonlinear equations relating the spectral functions of random and nonrandom matrices and establish the asymptotic expression for the resolvent of random matrices.
Keywords: spectra of random matrices, spectral functions of sample covariance matrices, spectra of infinite-dimensional random matrices.
@article{TMF_2006_148_2_a10,
     author = {V. I. Serdobol'skii},
     title = {Spectra of infinite-dimensional sample covariance matrices},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {309--322},
     year = {2006},
     volume = {148},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2006_148_2_a10/}
}
TY  - JOUR
AU  - V. I. Serdobol'skii
TI  - Spectra of infinite-dimensional sample covariance matrices
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2006
SP  - 309
EP  - 322
VL  - 148
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2006_148_2_a10/
LA  - ru
ID  - TMF_2006_148_2_a10
ER  - 
%0 Journal Article
%A V. I. Serdobol'skii
%T Spectra of infinite-dimensional sample covariance matrices
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2006
%P 309-322
%V 148
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2006_148_2_a10/
%G ru
%F TMF_2006_148_2_a10
V. I. Serdobol'skii. Spectra of infinite-dimensional sample covariance matrices. Teoretičeskaâ i matematičeskaâ fizika, Tome 148 (2006) no. 2, pp. 309-322. http://geodesic.mathdoc.fr/item/TMF_2006_148_2_a10/

[1] E. P. Wigner, Ann. Math., 67 (1958), 325–327 ; SIAM Rev., 9:1 (1967), 1–23 | DOI | MR | Zbl | DOI | Zbl

[2] T. A. Brody, J. Flores, J. B. French, P. A. Mello et al, Rev. Mod. Phys., 53:3 (1981), 385–479 ; C. E. Porter, Statistical Theories of Spectra Fluctuations, Academic Press, N.Y., 1965 | DOI | MR

[3] A. Khorunzhy, G. J. Rodgers, Math. Phys. Anal. Geom., 3:1 (2000), 1–31 | DOI | MR | Zbl

[4] V. A. Marchenko, L. A. Pastur, Matem. sb., 72 (1967), 507–536 | MR | Zbl

[5] V. L. Girko, Statistical Analysis of Observations of Increasing Dimension, Kluwer Academic Publishers, Dordrecht, 1995 | MR | Zbl

[6] V. L. Girko, Spektralnaya teoriya sluchainykh matrits, Nauka, M., 1988 | MR | Zbl

[7] V. L. Girko, Theory of Stochastic Canonical Equations, v. 1, 2, Kluwer Academic Publishers, Dordrecht, 2001 | MR | MR | Zbl

[8] V. I. Serdobolskii, Teoriya veroyatnostei i ee primeneniya, 40 (1995), 910–919 | MR | Zbl

[9] V. I. Serdobolskii, UMN, 54:2 (1999), 85–112 | DOI | MR | Zbl

[10] V. I. Serdobolskii, Multivariate Statistical Ananlysis. A High-Dimensional Approach, Kluwer Academic Publishers, Dordrecht, 2000 | MR | Zbl