@article{TMF_2006_148_2_a10,
author = {V. I. Serdobol'skii},
title = {Spectra of infinite-dimensional sample covariance matrices},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {309--322},
year = {2006},
volume = {148},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2006_148_2_a10/}
}
V. I. Serdobol'skii. Spectra of infinite-dimensional sample covariance matrices. Teoretičeskaâ i matematičeskaâ fizika, Tome 148 (2006) no. 2, pp. 309-322. http://geodesic.mathdoc.fr/item/TMF_2006_148_2_a10/
[1] E. P. Wigner, Ann. Math., 67 (1958), 325–327 ; SIAM Rev., 9:1 (1967), 1–23 | DOI | MR | Zbl | DOI | Zbl
[2] T. A. Brody, J. Flores, J. B. French, P. A. Mello et al, Rev. Mod. Phys., 53:3 (1981), 385–479 ; C. E. Porter, Statistical Theories of Spectra Fluctuations, Academic Press, N.Y., 1965 | DOI | MR
[3] A. Khorunzhy, G. J. Rodgers, Math. Phys. Anal. Geom., 3:1 (2000), 1–31 | DOI | MR | Zbl
[4] V. A. Marchenko, L. A. Pastur, Matem. sb., 72 (1967), 507–536 | MR | Zbl
[5] V. L. Girko, Statistical Analysis of Observations of Increasing Dimension, Kluwer Academic Publishers, Dordrecht, 1995 | MR | Zbl
[6] V. L. Girko, Spektralnaya teoriya sluchainykh matrits, Nauka, M., 1988 | MR | Zbl
[7] V. L. Girko, Theory of Stochastic Canonical Equations, v. 1, 2, Kluwer Academic Publishers, Dordrecht, 2001 | MR | MR | Zbl
[8] V. I. Serdobolskii, Teoriya veroyatnostei i ee primeneniya, 40 (1995), 910–919 | MR | Zbl
[9] V. I. Serdobolskii, UMN, 54:2 (1999), 85–112 | DOI | MR | Zbl
[10] V. I. Serdobolskii, Multivariate Statistical Ananlysis. A High-Dimensional Approach, Kluwer Academic Publishers, Dordrecht, 2000 | MR | Zbl