General form of the deformation of the Poisson superbracket
Teoretičeskaâ i matematičeskaâ fizika, Tome 148 (2006) no. 2, pp. 163-178
Voir la notice de l'article provenant de la source Math-Net.Ru
All continuous formal deformations of the Poisson algebra realized on
Grassmann-valued compactly supported smooth functions on $\mathbb R^{2n}$ with
$2n\ge4$ are found up to an equivalence transformation. We show that in
the algebras considered, there exist additional deformations that differ from
the Moyal bracket.
Keywords:
Grassmann algebra, central extension, $*$-commutator, deformation
Mots-clés : Poisson superalgebra, cohomologies, quantization.
Mots-clés : Poisson superalgebra, cohomologies, quantization.
@article{TMF_2006_148_2_a0,
author = {S. E. Konstein and A. G. Smirnov and I. V. Tyutin},
title = {General form of the deformation of the {Poisson} superbracket},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {163--178},
publisher = {mathdoc},
volume = {148},
number = {2},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2006_148_2_a0/}
}
TY - JOUR AU - S. E. Konstein AU - A. G. Smirnov AU - I. V. Tyutin TI - General form of the deformation of the Poisson superbracket JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2006 SP - 163 EP - 178 VL - 148 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2006_148_2_a0/ LA - ru ID - TMF_2006_148_2_a0 ER -
S. E. Konstein; A. G. Smirnov; I. V. Tyutin. General form of the deformation of the Poisson superbracket. Teoretičeskaâ i matematičeskaâ fizika, Tome 148 (2006) no. 2, pp. 163-178. http://geodesic.mathdoc.fr/item/TMF_2006_148_2_a0/