Quantum duality in quantum deformations
Teoretičeskaâ i matematičeskaâ fizika, Tome 148 (2006) no. 1, pp. 112-125

Voir la notice de l'article provenant de la source Math-Net.Ru

In accordance with the quantum duality principle, the twisted algebra $U_{\mathcal F}(\mathfrak g)$ is equivalent to the quantum group $\mathrm{Fun}_{\mathrm{def}}( \mathfrak G^{\#})$ and has two preferred bases: one inherited from the universal enveloping algebra $U(\mathfrak g)$ and the other generated by coordinate functions of the dual Lie group $\mathfrak G^{\#}$. We show how the transformation $\mathfrak g\longrightarrow\mathfrak g^{\#}$ can be explicitly obtained for any simple Lie algebra and a factorable chain $\mathcal F$ of extended Jordanian twists. In the algebra $\mathfrak g^{\#}$, we introduce a natural vector grading $\Gamma(\mathfrak g^{\#})$, compatible with the adjoint representation of the algebra. Passing to the dual-group coordinates allows essentially simplifying the costructure of the deformed Hopf algebra $U_{\mathcal F}(\mathfrak g)$, considered as a quantum group $\mathrm{Fun}_{\mathrm{def}}(\mathfrak G^{\#})$. The transformation $\mathfrak g\longrightarrow\mathfrak g^{\#}$ can be used to construct new solutions of the twist equations. We construct a parameterized family of extended Jordanian deformations $U_{\mathcal{EJ}}\bigl(\mathfrak{sl}(3)\bigr)$ and study it in terms of $\mathcal{SL}(3)^{\#}$; we find new realizations of the parabolic twist.
Mots-clés : Lie–Poisson structures
Keywords: quantum deformations of symmetry, quantum duality.
@article{TMF_2006_148_1_a9,
     author = {V. D. Lyakhovsky},
     title = {Quantum duality in quantum deformations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {112--125},
     publisher = {mathdoc},
     volume = {148},
     number = {1},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2006_148_1_a9/}
}
TY  - JOUR
AU  - V. D. Lyakhovsky
TI  - Quantum duality in quantum deformations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2006
SP  - 112
EP  - 125
VL  - 148
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2006_148_1_a9/
LA  - ru
ID  - TMF_2006_148_1_a9
ER  - 
%0 Journal Article
%A V. D. Lyakhovsky
%T Quantum duality in quantum deformations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2006
%P 112-125
%V 148
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2006_148_1_a9/
%G ru
%F TMF_2006_148_1_a9
V. D. Lyakhovsky. Quantum duality in quantum deformations. Teoretičeskaâ i matematičeskaâ fizika, Tome 148 (2006) no. 1, pp. 112-125. http://geodesic.mathdoc.fr/item/TMF_2006_148_1_a9/