Quantum duality in quantum deformations
Teoretičeskaâ i matematičeskaâ fizika, Tome 148 (2006) no. 1, pp. 112-125 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In accordance with the quantum duality principle, the twisted algebra $U_{\mathcal F}(\mathfrak g)$ is equivalent to the quantum group $\mathrm{Fun}_{\mathrm{def}}( \mathfrak G^{\#})$ and has two preferred bases: one inherited from the universal enveloping algebra $U(\mathfrak g)$ and the other generated by coordinate functions of the dual Lie group $\mathfrak G^{\#}$. We show how the transformation $\mathfrak g\longrightarrow\mathfrak g^{\#}$ can be explicitly obtained for any simple Lie algebra and a factorable chain $\mathcal F$ of extended Jordanian twists. In the algebra $\mathfrak g^{\#}$, we introduce a natural vector grading $\Gamma(\mathfrak g^{\#})$, compatible with the adjoint representation of the algebra. Passing to the dual-group coordinates allows essentially simplifying the costructure of the deformed Hopf algebra $U_{\mathcal F}(\mathfrak g)$, considered as a quantum group $\mathrm{Fun}_{\mathrm{def}}(\mathfrak G^{\#})$. The transformation $\mathfrak g\longrightarrow\mathfrak g^{\#}$ can be used to construct new solutions of the twist equations. We construct a parameterized family of extended Jordanian deformations $U_{\mathcal{EJ}}\bigl(\mathfrak{sl}(3)\bigr)$ and study it in terms of $\mathcal{SL}(3)^{\#}$; we find new realizations of the parabolic twist.
Mots-clés : Lie–Poisson structures
Keywords: quantum deformations of symmetry, quantum duality.
@article{TMF_2006_148_1_a9,
     author = {V. D. Lyakhovsky},
     title = {Quantum duality in quantum deformations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {112--125},
     year = {2006},
     volume = {148},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2006_148_1_a9/}
}
TY  - JOUR
AU  - V. D. Lyakhovsky
TI  - Quantum duality in quantum deformations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2006
SP  - 112
EP  - 125
VL  - 148
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2006_148_1_a9/
LA  - ru
ID  - TMF_2006_148_1_a9
ER  - 
%0 Journal Article
%A V. D. Lyakhovsky
%T Quantum duality in quantum deformations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2006
%P 112-125
%V 148
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2006_148_1_a9/
%G ru
%F TMF_2006_148_1_a9
V. D. Lyakhovsky. Quantum duality in quantum deformations. Teoretičeskaâ i matematičeskaâ fizika, Tome 148 (2006) no. 1, pp. 112-125. http://geodesic.mathdoc.fr/item/TMF_2006_148_1_a9/

[1] P. Bonneau, M. Gerstenhaber, A. Giaquinto, D. Sternheimer, J. Math. Phys., 45:10 (2004), 3703 | DOI | MR | Zbl

[2] V. G. Drinfeld, Algebra i analiz, 1:2 (1989), 30 | MR | Zbl

[3] M. A. Semenov-Tyan-Shanskii, TMF, 93:2 (1992), 302 | MR | Zbl

[4] V. G. Drinfeld, DAN SSSR, 273:3 (1983), 531 | MR | Zbl

[5] A. I. Ooms, Commun. Alg., 8:1 (1980), 13 | DOI | MR | Zbl

[6] P. P. Kulish, V. D. Lyakhovsky, M. A. del Olmo, J. Phys. A, 32 (1999), 8671 | DOI | MR | Zbl

[7] P. P. Kulish, V. D. Lyakhovsky, J. Phys. A, 33 (2000), L279 | DOI | MR | Zbl

[8] V. D. Lyakhovsky, “Basic twisting factors and the factorization properties of twists”, Supersymmetries and Quantum symmetries, Proc. XVII Max Born Symp. (Karpacz, Polland, 21–25 September, 2001), eds. E. Ivanov, S. Krivonos, J. Lukiersky, J. Popovich, World Scientific, Singapore–New Jersey–London–Hong Kong, 2002, 120

[9] O. V. Ogievetsky, “Hopf structures on the Borel subalgebra of $sl(2)$”, Proc. Winter School of Geometry and Physics, Ser. II (Zdankov, Czech Republic, January, 1993), 37, eds. J. Bures, V. Soucek, Suppl. Rend. Circ. Mat., Circolo Matematico di Palermo, Palermo, 1994, 185 | MR | Zbl

[10] P. P. Kulish, V. D. Lyakhovsky, A. I. Mudrov, J. Math. Phys., 40 (1999), 4569 | DOI | MR | Zbl

[11] N. Yu. Reshetikhin, Lett. Math. Phys., 20:4 (1990), 331 | DOI | MR | Zbl

[12] D. N. Ananikyan, P. P. Kulish, V. D. Lyakhovskii, Algebra i analiz, 14:3 (2002), 27 | MR | Zbl

[13] A. Nijenhuis, R. W. Richardson, Bull. Amer. Math. Soc., 70:3 (1964), 406 ; 72:1 (1966), 1 | DOI | MR | Zbl | DOI | MR | Zbl

[14] V. D. Lyakhovsky, Czech. J. Phys., 46 (1996), 227 | DOI | MR

[15] V. D. Lyakhovsky, M. A. del Olmo, J. Phys. A, 32 (1999), 5343 | DOI | MR | Zbl

[16] V. D. Lyakhovsky, M. E. Samsonov, Journ. Alg. Appl., 1:4 (2002), 413 | DOI | MR | Zbl