Quantum duality in quantum deformations
Teoretičeskaâ i matematičeskaâ fizika, Tome 148 (2006) no. 1, pp. 112-125
Voir la notice de l'article provenant de la source Math-Net.Ru
In accordance with the quantum duality principle, the twisted algebra $U_{\mathcal F}(\mathfrak g)$ is equivalent to the quantum group $\mathrm{Fun}_{\mathrm{def}}( \mathfrak G^{\#})$ and has two preferred bases: one inherited from the universal enveloping
algebra $U(\mathfrak g)$ and the other generated by coordinate functions of the dual
Lie group $\mathfrak G^{\#}$. We show how the transformation $\mathfrak g\longrightarrow\mathfrak g^{\#}$ can be explicitly obtained for any simple Lie algebra and a factorable chain $\mathcal F$ of extended Jordanian twists. In the algebra $\mathfrak g^{\#}$, we introduce a natural vector grading $\Gamma(\mathfrak g^{\#})$, compatible with the adjoint representation of the algebra. Passing to the dual-group coordinates allows essentially
simplifying the costructure of the deformed Hopf algebra $U_{\mathcal F}(\mathfrak g)$,
considered as a quantum group $\mathrm{Fun}_{\mathrm{def}}(\mathfrak G^{\#})$. The transformation $\mathfrak g\longrightarrow\mathfrak g^{\#}$ can be used to construct new solutions of the twist equations. We construct a parameterized family of extended Jordanian
deformations $U_{\mathcal{EJ}}\bigl(\mathfrak{sl}(3)\bigr)$ and study it in terms of $\mathcal{SL}(3)^{\#}$; we find new realizations of the parabolic twist.
Mots-clés :
Lie–Poisson structures
Keywords: quantum deformations of symmetry, quantum duality.
Keywords: quantum deformations of symmetry, quantum duality.
@article{TMF_2006_148_1_a9,
author = {V. D. Lyakhovsky},
title = {Quantum duality in quantum deformations},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {112--125},
publisher = {mathdoc},
volume = {148},
number = {1},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2006_148_1_a9/}
}
V. D. Lyakhovsky. Quantum duality in quantum deformations. Teoretičeskaâ i matematičeskaâ fizika, Tome 148 (2006) no. 1, pp. 112-125. http://geodesic.mathdoc.fr/item/TMF_2006_148_1_a9/