Exactly solvable two-dimensional complex model with a real spectrum
Teoretičeskaâ i matematičeskaâ fizika, Tome 148 (2006) no. 1, pp. 102-111 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Using supersymmetric intertwining relations of the second order in derivatives, we construct a two-dimensional quantum model with a complex potential for which all energy levels and the corresponding wave functions are obtained analytically. This model does not admit separation of variables and can be considered a complexified version of the generalized two-dimensional Morse model with an additional $\sinh^{-2}$ term. We prove that the energy spectrum of the model is purely real. To our knowledge, this is a rather rare example of a nontrivial exactly solvable model in two dimensions. We explicitly find the symmetry operator, describe the biorthogonal basis, and demonstrate the pseudo-Hermiticity of the Hamiltonian of the model. The obtained wave functions are simultaneously eigenfunctions of the symmetry operator.
Keywords: supersymmetric quantum mechanics, intertwining relations, complex potentials.
@article{TMF_2006_148_1_a8,
     author = {M. V. Ioffe and F. Cannata and D. N. Nishnianidze},
     title = {Exactly solvable two-dimensional complex model with a real spectrum},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {102--111},
     year = {2006},
     volume = {148},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2006_148_1_a8/}
}
TY  - JOUR
AU  - M. V. Ioffe
AU  - F. Cannata
AU  - D. N. Nishnianidze
TI  - Exactly solvable two-dimensional complex model with a real spectrum
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2006
SP  - 102
EP  - 111
VL  - 148
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2006_148_1_a8/
LA  - ru
ID  - TMF_2006_148_1_a8
ER  - 
%0 Journal Article
%A M. V. Ioffe
%A F. Cannata
%A D. N. Nishnianidze
%T Exactly solvable two-dimensional complex model with a real spectrum
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2006
%P 102-111
%V 148
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2006_148_1_a8/
%G ru
%F TMF_2006_148_1_a8
M. V. Ioffe; F. Cannata; D. N. Nishnianidze. Exactly solvable two-dimensional complex model with a real spectrum. Teoretičeskaâ i matematičeskaâ fizika, Tome 148 (2006) no. 1, pp. 102-111. http://geodesic.mathdoc.fr/item/TMF_2006_148_1_a8/

[1] F. Calogero, J. Math. Phys., 10 (1969), 2191 ; 2197 ; 12 (1971), 419 ; M. A. Olshanetsky, A. M. Perelomov, Phys. Rep., 94 (1983), 313 | DOI | MR | DOI | Zbl | DOI | MR | Zbl | DOI | MR

[2] M. V. Ioffe, A. I. Neelov, J. Phys. A, 35 (2002), 7613 | DOI | MR | Zbl

[3] F. Cannata, M. V. Ioffe, D. N. Nishnianidze, J. Phys. A, 35 (2002), 1389 | DOI | MR | Zbl

[4] F. Cannata, M. V. Ioffe, D. N. Nishnianidze, Phys. Lett. A, 310 (2003), 344 | DOI | MR | Zbl

[5] M. V. Ioffe, J. Phys. A, 37 (2004), 10363 | DOI | MR | Zbl

[6] M. V. Ioffe, P. A. Valinevich, J. Phys. A, 38 (2005), 2497 | DOI | MR | Zbl

[7] A. A. Andrianov, M. V. Ioffe, D. N. Nishnianidze, J. Phys. A, 32 (1999), 4641 | DOI | MR | Zbl

[8] A. A. Andrianov, M. V. Ioffe, D. N. Nishnianidze, Phys. Lett. A, 201 (1995), 103 ; Higher order SUSY in quantum mechanics and integrability of two-dimensional hamiltonians, ; A. A. Aндрианов, M. В. Иоффе, Д. Н. Нишнианидзе, ТМФ, 104 (1995), 463 solv-int/9605007 | DOI | MR | Zbl | MR | Zbl

[9] F. Cannata, M. V. Ioffe, D. N. Nishnianidze, Phys. Lett. A, 340 (2005), 31 | DOI | MR | Zbl

[10] A. Mostafazadeh, J. Math. Phys., 43 (2002), 205 ; 2814 ; 3944 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[11] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, t. 1–3, Nauka, M., 1973 | MR | MR | MR | Zbl

[12] V. S. Buslaev, V. Grecchi, J. Phys. A, 26 (1993), 5541 ; F. Cannata, M. V. Ioffe, R. Roychoudhury, P. Roy, Phys. Lett. A, 281 (2001), 305 ; Z. Ahmed, Phys. Lett. A, 290 (2001), 19 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[13] C. M. Bender, S. Boettcher, Phys. Rev. Lett., 80 (1998), 5243 | DOI | MR | Zbl

[14] C. M. Bender, Introduction to PT-symmetric quantum theory, ; A. Mostafazadeh, A. Batal, J. Phys. A, 37 (2004), 11645 quant-ph/0501052 | DOI | MR | Zbl