Exactly solvable two-dimensional complex model with a real spectrum
Teoretičeskaâ i matematičeskaâ fizika, Tome 148 (2006) no. 1, pp. 102-111

Voir la notice de l'article provenant de la source Math-Net.Ru

Using supersymmetric intertwining relations of the second order in derivatives, we construct a two-dimensional quantum model with a complex potential for which all energy levels and the corresponding wave functions are obtained analytically. This model does not admit separation of variables and can be considered a complexified version of the generalized two-dimensional Morse model with an additional $\sinh^{-2}$ term. We prove that the energy spectrum of the model is purely real. To our knowledge, this is a rather rare example of a nontrivial exactly solvable model in two dimensions. We explicitly find the symmetry operator, describe the biorthogonal basis, and demonstrate the pseudo-Hermiticity of the Hamiltonian of the model. The obtained wave functions are simultaneously eigenfunctions of the symmetry operator.
Keywords: supersymmetric quantum mechanics, intertwining relations, complex potentials.
@article{TMF_2006_148_1_a8,
     author = {M. V. Ioffe and F. Cannata and D. N. Nishnianidze},
     title = {Exactly solvable two-dimensional complex model with a real spectrum},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {102--111},
     publisher = {mathdoc},
     volume = {148},
     number = {1},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2006_148_1_a8/}
}
TY  - JOUR
AU  - M. V. Ioffe
AU  - F. Cannata
AU  - D. N. Nishnianidze
TI  - Exactly solvable two-dimensional complex model with a real spectrum
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2006
SP  - 102
EP  - 111
VL  - 148
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2006_148_1_a8/
LA  - ru
ID  - TMF_2006_148_1_a8
ER  - 
%0 Journal Article
%A M. V. Ioffe
%A F. Cannata
%A D. N. Nishnianidze
%T Exactly solvable two-dimensional complex model with a real spectrum
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2006
%P 102-111
%V 148
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2006_148_1_a8/
%G ru
%F TMF_2006_148_1_a8
M. V. Ioffe; F. Cannata; D. N. Nishnianidze. Exactly solvable two-dimensional complex model with a real spectrum. Teoretičeskaâ i matematičeskaâ fizika, Tome 148 (2006) no. 1, pp. 102-111. http://geodesic.mathdoc.fr/item/TMF_2006_148_1_a8/