Notes on divergences and dimensional transmutation in Yang–Mills theory
Teoretičeskaâ i matematičeskaâ fizika, Tome 148 (2006) no. 1, pp. 133-142 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We discuss the specificity of charge renormalization in Yang–Mills theory. We show that the values of the running coupling constant in dimensional regularization and in momentum truncation coincide. Dimensional transmutation is interpreted as replacing the dimensionless coupling constant with a dimensional invariant of the renormalization group equation.
Mots-clés : dimensional transmutation
Keywords: renormalization group equations, dimensional regularization, momentum truncation.
@article{TMF_2006_148_1_a11,
     author = {L. D. Faddeev},
     title = {Notes on divergences and dimensional transmutation in {Yang{\textendash}Mills} theory},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {133--142},
     year = {2006},
     volume = {148},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2006_148_1_a11/}
}
TY  - JOUR
AU  - L. D. Faddeev
TI  - Notes on divergences and dimensional transmutation in Yang–Mills theory
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2006
SP  - 133
EP  - 142
VL  - 148
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2006_148_1_a11/
LA  - ru
ID  - TMF_2006_148_1_a11
ER  - 
%0 Journal Article
%A L. D. Faddeev
%T Notes on divergences and dimensional transmutation in Yang–Mills theory
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2006
%P 133-142
%V 148
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2006_148_1_a11/
%G ru
%F TMF_2006_148_1_a11
L. D. Faddeev. Notes on divergences and dimensional transmutation in Yang–Mills theory. Teoretičeskaâ i matematičeskaâ fizika, Tome 148 (2006) no. 1, pp. 133-142. http://geodesic.mathdoc.fr/item/TMF_2006_148_1_a11/

[1] S. Coleman, E. Weinberg, Phys. Rev. D, 7 (1973), 1888 | DOI

[2] S. P. Merkurev, L. D. Faddeev, Kvantovaya teoriya rasseyaniya dlya sistem neskolkikh chastits, Nauka, M., 1985 | MR | Zbl

[3] F. A. Berezin, L. D. Faddeev, DAN SSSR, 137 (1961), 1011 | MR | Zbl

[4] R. Jackiw, “What good are quantum field theory infinities”, Mathematical Physics 2000, Int. Congress (London, 2000), eds. A. Fokas, A. Grigoryan, T. Kibbe, B. Zegarlinski, Imperial College Press, London, 2000, 101 | DOI | MR | Zbl

[5] G. 't Hooft, Phys. Stat. Solidi (b), 237:1, 13 | DOI

[6] F. Wilczek, “Four big questions with pretty good answers”, Fundamental Physics: Heisenberg and Beyond, Werner Heisenberg Centennial Symposium “Developments in Modern Physics”, eds. G. W. Buschhorn, J. Wess, Springer, Berlin, 2004, 79 ; hep-ph/0201222 | DOI | MR | Zbl

[7] G. 't. Hooft, Nucl. Phys. B, 62 (1973), 444 ; Б. Девитт, Динамическая теория групп и полей, Мир, М., 1987 | DOI | MR

[8] L. D. Faddeev, “Kvantovaya teoriya kalibrovochnykh polei”, Vektornye mezony i elektromagnitnye vzaimodeistviya, Tr. mezhdunar. seminara (Dubna, 23–26 sentyabrya 1969 g.), ed. A. M. Baldin, OIYaI, Dubna, 1969, 13

[9] L. F. Abbot, Nucl. Phys. B, 185 (1982), 189 | DOI

[10] I. Jack, H. Osborn, Nucl. Phys. B, 207 (1982), 474 | DOI

[11] J. P. Bornsen, A. E. M. van de Ven, Nucl. Phys. B, 657 (2003), 257 | DOI | MR | Zbl

[12] A. M. Polyakov, Kalibrovochnye polya i struny, Izhevsk, Udmurtsk. Univ-t, 1999 | Zbl

[13] L. D. Faddeev, A. Niemi, Phys. Lett. B, 525 (2002), 195 | DOI | MR | Zbl

[14] L. D. Faddeev, T. A. Bolokhov, TMF, 139:2 (2004), 276 | DOI | MR | Zbl

[15] F. V. Gubarev, L. Stodolsky, V. I. Zakharov, Phys. Rev. Lett., 86 (2001), 2220 ; K. I. Kondo, Phys. Lett. B, 514 (2001), 335 ; H. Verschelde, K. Knecht, K. Van Acoleyen, M. Vanderkelen, Phys. Lett. B, 516 (2001), 307 ; hep-th/0105018 | DOI | DOI | Zbl | DOI | Zbl

[16] G. K. Savvidy, Phys. Lett. B, 71 (1977), 133 | DOI