$\mathbb C^2$ formulation of Euler liquid
Teoretičeskaâ i matematičeskaâ fizika, Tome 148 (2006) no. 1, pp. 126-132

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct the Hamiltonian formalism for continuous media using the representation of Euler variables in a $\mathbb C^2\times\infty$ phase space.
Keywords: hydrodynamics, canonical formalism.
@article{TMF_2006_148_1_a10,
     author = {G. P. Pron'ko},
     title = {$\mathbb C^2$ formulation of {Euler} liquid},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {126--132},
     publisher = {mathdoc},
     volume = {148},
     number = {1},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2006_148_1_a10/}
}
TY  - JOUR
AU  - G. P. Pron'ko
TI  - $\mathbb C^2$ formulation of Euler liquid
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2006
SP  - 126
EP  - 132
VL  - 148
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2006_148_1_a10/
LA  - ru
ID  - TMF_2006_148_1_a10
ER  - 
%0 Journal Article
%A G. P. Pron'ko
%T $\mathbb C^2$ formulation of Euler liquid
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2006
%P 126-132
%V 148
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2006_148_1_a10/
%G ru
%F TMF_2006_148_1_a10
G. P. Pron'ko. $\mathbb C^2$ formulation of Euler liquid. Teoretičeskaâ i matematičeskaâ fizika, Tome 148 (2006) no. 1, pp. 126-132. http://geodesic.mathdoc.fr/item/TMF_2006_148_1_a10/