Optimal method for truncating a chain of equations for two-time
Teoretičeskaâ i matematičeskaâ fizika, Tome 147 (2006) no. 3, pp. 503-510
Cet article a éte moissonné depuis la source Math-Net.Ru
We use an example of a chain of equations describing a system of Bose particles with pairwise interaction to develop a method for decoupling the chain at its second element. We obtain an approximation of the interacting-modes type, which results in a system of nonlinear equations for one-, two-, and three-particle functions.
Keywords:
Green's functions, approximation of interacting modes.
Mots-clés : chains of equations
Mots-clés : chains of equations
@article{TMF_2006_147_3_a7,
author = {Yu. A. Tserkovnikov},
title = {Optimal method for truncating a chain of equations for two-time},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {503--510},
year = {2006},
volume = {147},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2006_147_3_a7/}
}
Yu. A. Tserkovnikov. Optimal method for truncating a chain of equations for two-time. Teoretičeskaâ i matematičeskaâ fizika, Tome 147 (2006) no. 3, pp. 503-510. http://geodesic.mathdoc.fr/item/TMF_2006_147_3_a7/
[1] Yu. A. Tserkovnikov, TMF, 129:3 (2001), 432 | DOI | MR | Zbl
[2] N. N. Bogolyubov, D. V. Shirkov, Kvantovye polya, Nauka, M., 1980 | MR | Zbl
[3] D. N. Zubarev, UFN, 71:1 (1960), 71 | DOI | MR
[4] D. N. Zubarev, Yu. A. Tserkovnikov, Tr. MIAN, 175, 1986, 134 | MR
[5] Yu. A. Tserkovnikov, Tr. MIAN, 228, 2000, 286 | MR | Zbl
[6] W. S. Götze, M. Lücke, Phys. Rev. A, 11 (1975), 2173 ; S. Yip, Ann. Rev. Phys. Chem., 30 (1979), 547 | DOI | DOI