A geometric approach to the canonical reformulation of quantum
Teoretičeskaâ i matematičeskaâ fizika, Tome 147 (2006) no. 3, pp. 479-486 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The measure of distinguishability between two neighboring preparations of a physical system by a measurement device naturally defines a line element on the preparation space of the system. We show that quantum mechanics can be derived from the invariance of this line element in the canonical formulation. We also discuss the canonical formulation of quantum statistical mechanics.
Keywords: preparation, distinguishability metric, measurement device, canonical quantum mechanics.
@article{TMF_2006_147_3_a5,
     author = {M. Mehrafarin},
     title = {A geometric approach to the canonical reformulation of quantum},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {479--486},
     year = {2006},
     volume = {147},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2006_147_3_a5/}
}
TY  - JOUR
AU  - M. Mehrafarin
TI  - A geometric approach to the canonical reformulation of quantum
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2006
SP  - 479
EP  - 486
VL  - 147
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2006_147_3_a5/
LA  - ru
ID  - TMF_2006_147_3_a5
ER  - 
%0 Journal Article
%A M. Mehrafarin
%T A geometric approach to the canonical reformulation of quantum
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2006
%P 479-486
%V 147
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2006_147_3_a5/
%G ru
%F TMF_2006_147_3_a5
M. Mehrafarin. A geometric approach to the canonical reformulation of quantum. Teoretičeskaâ i matematičeskaâ fizika, Tome 147 (2006) no. 3, pp. 479-486. http://geodesic.mathdoc.fr/item/TMF_2006_147_3_a5/

[1] J. Anandan, Y. Aharanov, Phys. Rev. Lett., 65 (1990), 1697 ; J. Anandan, Found. Phys., 21 (1991), 1265 ; G. W. Gibbons, J. Geom. Phys., 8 (1992), 147 ; S. L. Braunstein, C. M. Caves, Phys. Rev. Lett., 72 (1994), 3439 | DOI | MR | Zbl | DOI | MR | DOI | MR | Zbl | DOI | MR | Zbl

[2] R. A. Fisher, Proc. Roy. Soc. Edinburgh, 42 (1922), 321 ; A. Bhattacharyya, Bull. Calcutta Math. Soc., 35 (1943), 99 ; W. K. Wootters, Phys. Rev. D, 23 (1981), 357 | DOI | MR | Zbl | DOI | MR

[3] A. Ashtekar, T. A. Schilling, Geometrical formulation of quantum mechanics, ; S. Weinberg, Ann. Phys., 194 (1989), 336 ; M. J. W. Hall, M. Reginatto, J. Phys. A, 35 (2002), 3289 ; M. J. W. Hall, K. Kumar, M. Reginatto, J. Phys. A, 36 (2003), 9779 ; N. P. Landsman, Mathematical Topics Between Classical and Quantum Mechanics, Springer, New York, 1998 ; F. Guerra, R. Marra, Phys. Rev. D, 29 (1984), 1647 ; D. Minic, C. H. Tze, Phys. Lett. B, 536 (2002), 305 ; 581 (2004), 111 ; Phys. Rev. D, 68 (2003), 061501 gr-qc/9706069 | MR | DOI | MR | DOI | MR | Zbl | DOI | MR | Zbl | MR | DOI | MR | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR

[4] M. Mehrafarin, Int. J. Theor. Phys., 44 (2005), 429 | DOI | MR | Zbl

[5] E. Vigner, Teoriya grupp, IL, M., 1961

[6] G. Goldstein, Klassicheskaya mekhanika, Nauka, M., 1974 | MR