A hierarchy of generalized invariants for linear partial differential
Teoretičeskaâ i matematičeskaâ fizika, Tome 147 (2006) no. 3, pp. 470-478
Voir la notice de l'article provenant de la source Math-Net.Ru
We study invariants of linear partial differential operators in two variables
under gauge transformations. Using the Beals–Kartashova factorization, we
construct a hierarchy of generalized invariants for operators of an arbitrary
order. We study the properties of these invariants and give some examples. We
also show that the classic Laplace invariants correspond to some particular
cases of generalized invariants.
Keywords:
linear partial differential operator, Beals–Kartashova factorization, generalized invariant, hierarchy of invariants.
@article{TMF_2006_147_3_a4,
author = {E. A. Kartashova},
title = {A hierarchy of generalized invariants for linear partial differential},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {470--478},
publisher = {mathdoc},
volume = {147},
number = {3},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2006_147_3_a4/}
}
E. A. Kartashova. A hierarchy of generalized invariants for linear partial differential. Teoretičeskaâ i matematičeskaâ fizika, Tome 147 (2006) no. 3, pp. 470-478. http://geodesic.mathdoc.fr/item/TMF_2006_147_3_a4/