How to realize a Lie algebra by vector fields
Teoretičeskaâ i matematičeskaâ fizika, Tome 147 (2006) no. 3, pp. 450-469
Voir la notice de l'article provenant de la source Math-Net.Ru
We describe an algorithm for embedding a finite-dimensional Lie algebra
(superalgebra) into a Lie algebra (superalgebra) of
vector fields that is suitable for a ground field of any characteristic and
also a way to select the Cartan, complete, and partial prolongations of the
Lie algebra of vector fields using differential equations. We illustrate the
algorithm with the example of Cartan's interpretation of the exceptional
simple Lie algebra $\mathfrak g(2)$ as the Lie algebra preserving a certain
nonintegrable distribution and also several other examples.
Mots-clés :
Cartan prolongation
Keywords: nonintegrable distributions, $\mathfrak g(2)$ structure.
Keywords: nonintegrable distributions, $\mathfrak g(2)$ structure.
@article{TMF_2006_147_3_a3,
author = {I. M. Shchepochkina},
title = {How to realize a {Lie} algebra by vector fields},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {450--469},
publisher = {mathdoc},
volume = {147},
number = {3},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2006_147_3_a3/}
}
I. M. Shchepochkina. How to realize a Lie algebra by vector fields. Teoretičeskaâ i matematičeskaâ fizika, Tome 147 (2006) no. 3, pp. 450-469. http://geodesic.mathdoc.fr/item/TMF_2006_147_3_a3/