How to realize a Lie algebra by vector fields
Teoretičeskaâ i matematičeskaâ fizika, Tome 147 (2006) no. 3, pp. 450-469

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe an algorithm for embedding a finite-dimensional Lie algebra (superalgebra) into a Lie algebra (superalgebra) of vector fields that is suitable for a ground field of any characteristic and also a way to select the Cartan, complete, and partial prolongations of the Lie algebra of vector fields using differential equations. We illustrate the algorithm with the example of Cartan's interpretation of the exceptional simple Lie algebra $\mathfrak g(2)$ as the Lie algebra preserving a certain nonintegrable distribution and also several other examples.
Mots-clés : Cartan prolongation
Keywords: nonintegrable distributions, $\mathfrak g(2)$ structure.
@article{TMF_2006_147_3_a3,
     author = {I. M. Shchepochkina},
     title = {How to realize a {Lie} algebra by vector fields},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {450--469},
     publisher = {mathdoc},
     volume = {147},
     number = {3},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2006_147_3_a3/}
}
TY  - JOUR
AU  - I. M. Shchepochkina
TI  - How to realize a Lie algebra by vector fields
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2006
SP  - 450
EP  - 469
VL  - 147
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2006_147_3_a3/
LA  - ru
ID  - TMF_2006_147_3_a3
ER  - 
%0 Journal Article
%A I. M. Shchepochkina
%T How to realize a Lie algebra by vector fields
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2006
%P 450-469
%V 147
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2006_147_3_a3/
%G ru
%F TMF_2006_147_3_a3
I. M. Shchepochkina. How to realize a Lie algebra by vector fields. Teoretičeskaâ i matematičeskaâ fizika, Tome 147 (2006) no. 3, pp. 450-469. http://geodesic.mathdoc.fr/item/TMF_2006_147_3_a3/