How to realize a Lie algebra by vector fields
Teoretičeskaâ i matematičeskaâ fizika, Tome 147 (2006) no. 3, pp. 450-469 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We describe an algorithm for embedding a finite-dimensional Lie algebra (superalgebra) into a Lie algebra (superalgebra) of vector fields that is suitable for a ground field of any characteristic and also a way to select the Cartan, complete, and partial prolongations of the Lie algebra of vector fields using differential equations. We illustrate the algorithm with the example of Cartan's interpretation of the exceptional simple Lie algebra $\mathfrak g(2)$ as the Lie algebra preserving a certain nonintegrable distribution and also several other examples.
Mots-clés : Cartan prolongation
Keywords: nonintegrable distributions, $\mathfrak g(2)$ structure.
@article{TMF_2006_147_3_a3,
     author = {I. M. Shchepochkina},
     title = {How to realize a {Lie} algebra by vector fields},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {450--469},
     year = {2006},
     volume = {147},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2006_147_3_a3/}
}
TY  - JOUR
AU  - I. M. Shchepochkina
TI  - How to realize a Lie algebra by vector fields
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2006
SP  - 450
EP  - 469
VL  - 147
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2006_147_3_a3/
LA  - ru
ID  - TMF_2006_147_3_a3
ER  - 
%0 Journal Article
%A I. M. Shchepochkina
%T How to realize a Lie algebra by vector fields
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2006
%P 450-469
%V 147
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2006_147_3_a3/
%G ru
%F TMF_2006_147_3_a3
I. M. Shchepochkina. How to realize a Lie algebra by vector fields. Teoretičeskaâ i matematičeskaâ fizika, Tome 147 (2006) no. 3, pp. 450-469. http://geodesic.mathdoc.fr/item/TMF_2006_147_3_a3/

[1] É. Cartan, Leipziger Berichte, XLV (1893), 395–420 ; “Über die Einfachen Transformationsgrouppen.”, ØE uvres complètes. Partie I. Groups de Lie, Reprinted, 2nd ed., Éditions du Centre National de la Recherche Scientifique (CNRS), Paris, 1984, 107–132 | Zbl | MR

[2] P. Grozman, D. Leites, Lett. Math. Phys., 74:3 (2005), 229–262 ; math.RT/0509400 | DOI | MR | Zbl

[3] P. Grozman, SuperLie, http://www.equaonline.com/math/SuperLie

[4] Q.-Y. Fei, G.-Y. Shen, J. Algebra, 152 (1992), 439–453 | DOI | MR | Zbl

[5] K. Yamaguchi, “Differential systems associated with simple graded Lie algebras”, Progress in Differential Geometry, Adv. Stud. Pure Math., 22, ed. K. Shiohama, Kinokunia, Tokyo, 1993, 413–494 | MR | Zbl

[6] I. M. Schepochkina, Funkts. analiz i ego prilozh., 33:3 (1999), 59–72 ; I. Shchepochkina, G. Post, Internat. J. Algebra Comput., 8:4 (1998), 479–495 | DOI | MR | DOI | MR | Zbl

[7] I. Shchepochkina, Represent. Theory, 3 (1999), 373–415 ; hep-th/9702121 | DOI | MR | Zbl

[8] T. Larsson, Structures preserved by consistently graded Lie superalgebras, math-ph/0106004

[9] T. Larsson, Structures preserved by exceptional Lie algebras, math-ph/0301006

[10] Ch. Burdik, P. Grozman, D. Leites, A. Sergeev, TMF, 124:2 (2000), 227–238 | DOI | MR | Zbl

[11] V. Molotkov, Explicit realization of induced and coinduced modules over Lie superalgebras by differential operators, math.RT/0509105

[12] B. A. Dubrovin, S. P. Novikov, A. T. Fomenko, Sovremennaya geometriya. Metody i prilozheniya, Nauka, M., 1979 | MR

[13] S. Sternberg, Lektsii po differentsialnoi geometrii, Mir, M., 1970 | MR | Zbl

[14] S.-J. Cheng, V. G. Kac, Commun. Math. Phys., 186:1 (1997), 219–231 | DOI | MR | Zbl