The $q$-deformed harmonic oscillator, coherent states, and the
Teoretičeskaâ i matematičeskaâ fizika, Tome 147 (2006) no. 2, pp. 315-322

Voir la notice de l'article provenant de la source Math-Net.Ru

For a $q$-deformed harmonic oscillator, we find explicit coordinate representations of the creation and annihilation operators, eigenfunctions, and coherent states {(}the last being defined as eigenstates of the annihilation operator{\rm)}. We calculate the product of the “coordinate–momentum” uncertainties in $q$-oscillator eigenstates and in coherent states. For the oscillator, this product is minimum in the ground state and equals $1/2$, as in the standard quantum mechanics. For coherent states, the $q$-deformation results in a violation of the standard uncertainty relation{;} the product of the coordinate- and momentum-operator uncertainties is always less than $1/2$. States with the minimum uncertainty, which tends to zero, correspond to the values of $\lambda$ near the convergence radius of the $q$-exponential.
Mots-clés : $q$-deformation
Keywords: harmonic oscillator, creation operators, annihilation operators, coherent states, uncertainty relation.
@article{TMF_2006_147_2_a7,
     author = {V. V. Eremin and A. A. Meldianov},
     title = {The $q$-deformed harmonic oscillator, coherent states, and the},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {315--322},
     publisher = {mathdoc},
     volume = {147},
     number = {2},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2006_147_2_a7/}
}
TY  - JOUR
AU  - V. V. Eremin
AU  - A. A. Meldianov
TI  - The $q$-deformed harmonic oscillator, coherent states, and the
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2006
SP  - 315
EP  - 322
VL  - 147
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2006_147_2_a7/
LA  - ru
ID  - TMF_2006_147_2_a7
ER  - 
%0 Journal Article
%A V. V. Eremin
%A A. A. Meldianov
%T The $q$-deformed harmonic oscillator, coherent states, and the
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2006
%P 315-322
%V 147
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2006_147_2_a7/
%G ru
%F TMF_2006_147_2_a7
V. V. Eremin; A. A. Meldianov. The $q$-deformed harmonic oscillator, coherent states, and the. Teoretičeskaâ i matematičeskaâ fizika, Tome 147 (2006) no. 2, pp. 315-322. http://geodesic.mathdoc.fr/item/TMF_2006_147_2_a7/