The $q$-deformed harmonic oscillator, coherent states, and the
Teoretičeskaâ i matematičeskaâ fizika, Tome 147 (2006) no. 2, pp. 315-322
Voir la notice de l'article provenant de la source Math-Net.Ru
For a $q$-deformed harmonic oscillator, we find explicit coordinate
representations of the creation and annihilation operators, eigenfunctions,
and coherent states {(}the last being defined as eigenstates of the
annihilation operator{\rm)}. We calculate the product of the
“coordinate–momentum” uncertainties in $q$-oscillator eigenstates and in
coherent states. For the oscillator, this product is minimum in the ground
state and equals $1/2$, as in the standard quantum mechanics. For coherent
states, the $q$-deformation results in a violation of the standard
uncertainty relation{;} the product of the coordinate- and
momentum-operator uncertainties is always less than $1/2$. States with the
minimum uncertainty, which tends to zero, correspond to the values of
$\lambda$ near the convergence radius of the $q$-exponential.
Mots-clés :
$q$-deformation
Keywords: harmonic oscillator, creation operators, annihilation operators, coherent states, uncertainty relation.
Keywords: harmonic oscillator, creation operators, annihilation operators, coherent states, uncertainty relation.
@article{TMF_2006_147_2_a7,
author = {V. V. Eremin and A. A. Meldianov},
title = {The $q$-deformed harmonic oscillator, coherent states, and the},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {315--322},
publisher = {mathdoc},
volume = {147},
number = {2},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2006_147_2_a7/}
}
TY - JOUR AU - V. V. Eremin AU - A. A. Meldianov TI - The $q$-deformed harmonic oscillator, coherent states, and the JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2006 SP - 315 EP - 322 VL - 147 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2006_147_2_a7/ LA - ru ID - TMF_2006_147_2_a7 ER -
V. V. Eremin; A. A. Meldianov. The $q$-deformed harmonic oscillator, coherent states, and the. Teoretičeskaâ i matematičeskaâ fizika, Tome 147 (2006) no. 2, pp. 315-322. http://geodesic.mathdoc.fr/item/TMF_2006_147_2_a7/