The levels of the two-particle Schrödinger operator corresponding to
Teoretičeskaâ i matematičeskaâ fizika, Tome 147 (2006) no. 2, pp. 229-239 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a two-particle Schrödinger operator considered in a cell and having a potential periodic in four variables, we establish the existence of levels {(}i.e., eigenvalues or resonances{\rm)} in the neighborhood of singular points of the unperturbed Green's function and derive an asymptotic formula for these levels. We prove an existence and uniqueness theorem for the solution of the corresponding Lippmann–Schwinger equation.
Keywords: two-particle Schrödinger operator, Lippmann–Schwinger equation, resonance, eigenvalue.
@article{TMF_2006_147_2_a1,
     author = {Yu. P. Chuburin},
     title = {The levels of the two-particle {Schr\"odinger} operator corresponding to},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {229--239},
     year = {2006},
     volume = {147},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2006_147_2_a1/}
}
TY  - JOUR
AU  - Yu. P. Chuburin
TI  - The levels of the two-particle Schrödinger operator corresponding to
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2006
SP  - 229
EP  - 239
VL  - 147
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2006_147_2_a1/
LA  - ru
ID  - TMF_2006_147_2_a1
ER  - 
%0 Journal Article
%A Yu. P. Chuburin
%T The levels of the two-particle Schrödinger operator corresponding to
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2006
%P 229-239
%V 147
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2006_147_2_a1/
%G ru
%F TMF_2006_147_2_a1
Yu. P. Chuburin. The levels of the two-particle Schrödinger operator corresponding to. Teoretičeskaâ i matematičeskaâ fizika, Tome 147 (2006) no. 2, pp. 229-239. http://geodesic.mathdoc.fr/item/TMF_2006_147_2_a1/

[1] M. Rid, B. Saimon, Sovremennye metody matematicheskoi fiziki. T. 4. Analiz operatorov, Mir, M., 1982 | MR

[2] Dzh. Teilor, Teoriya rasseyaniya. Kvantovaya teoriya nerelyativistskikh stolknovenii, Mir, M., 1975

[3] Yu. P. Chuburin, Commun. Math. Phys., 249 (2004), 497 | DOI | MR | Zbl

[4] W. Hunziker, I. M. Sigal, J. Math. Phys., 41 (2000), 3448 | DOI | MR | Zbl

[5] A. F. Nikiforov, V. B. Uvarov, Spetsialnye funktsii matematicheskoi fiziki, Nauka, M., 1984 | MR

[6] M. Rid, B. Saimon, Sovremennye metody matematicheskoi fiziki. T. 3. Teoriya rasseyaniya, Mir, M., 1982 | MR

[7] M. Rid, B. Saimon, Sovremennye metody matematicheskoi fiziki. T. 1. Funktsionalnyi analiz, Mir, M., 1977 | MR