Matrix models, complex geometry, and integrable
Teoretičeskaâ i matematičeskaâ fizika, Tome 147 (2006) no. 2, pp. 163-228 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the simplest gauge theories given by one- and two-matrix integrals and concentrate on their stringy and geometric properties. We recall the general integrable structure behind the matrix integrals and turn to the geometric properties of planar matrix models, demonstrating that they are universally described in terms of integrable systems directly related to the theory of complex curves. We study the main ingredients of this geometric picture, suggesting that it can be generalized beyond one complex dimension, and formulate them in terms of semiclassical integrable systems solved by constructing tau functions or prepotentials. We discuss the complex curves and tau functions of one- and two-matrix models in detail.
Keywords: string theory, matrix models, complex geometry.
@article{TMF_2006_147_2_a0,
     author = {A. V. Marshakov},
     title = {Matrix models, complex geometry, and integrable},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {163--228},
     year = {2006},
     volume = {147},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2006_147_2_a0/}
}
TY  - JOUR
AU  - A. V. Marshakov
TI  - Matrix models, complex geometry, and integrable
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2006
SP  - 163
EP  - 228
VL  - 147
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2006_147_2_a0/
LA  - ru
ID  - TMF_2006_147_2_a0
ER  - 
%0 Journal Article
%A A. V. Marshakov
%T Matrix models, complex geometry, and integrable
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2006
%P 163-228
%V 147
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2006_147_2_a0/
%G ru
%F TMF_2006_147_2_a0
A. V. Marshakov. Matrix models, complex geometry, and integrable. Teoretičeskaâ i matematičeskaâ fizika, Tome 147 (2006) no. 2, pp. 163-228. http://geodesic.mathdoc.fr/item/TMF_2006_147_2_a0/

[1] A. M. Polyakov, Kalibrovochnye polya i struny, ITF im. L. D. Landau, Chernogolovka, 1995

[2] J. Polchinski, Phys. Rev. Lett., 75 (1995), 4724 ; ; Progr. Theor. Phys. Suppl., 123 (1996), 9 ; ; Rev. Mod. Phys., 68 (1996), 1245 ; ; TASI lectures on $D$-branes, hep-th/9510017hep-th/9511157hep-th/9607050hep-th/9611050 | DOI | MR | Zbl | DOI | MR | DOI | MR

[3] J. Polchinski, String Theory, Cambridge Univ. Press, Cambridge, 1998 | MR

[4] J. M. Maldacena, TASI 2003 lectures on AdS/CFT, hep-th/0309246 | MR

[5] A. V. Marshakov, UFN, 172 (2002), 977 ; hep-th/0212114 | DOI

[6] G. 't Hooft, Nucl. Phys. B, 72 (1974), 461 | DOI

[7] E. Brézin, C. Itzykson, G. Parisi, J.-B. Zuber, Commun. Math. Phys., 59 (1978), 35 ; F. David, Nucl. Phys. B, 257 [FS14] (1985), 45 ; V. Kazakov, Phys. Lett. B, 150 (1985), 282 | DOI | MR | Zbl | DOI | MR | DOI | MR

[8] E. Witten, Commun. Math. Phys., 252 (2004), 189 ; ; Adv. Theor. Math. Phys., 8 (2004), 779 ; ; D. Polyakov, Phys. Lett. B, 611 (2005), 173 ; hep-th/0312171hep-th/0403199hep-th/0501219 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[9] A. Gerasimov, A. Marshakov, A. Mironov, A. Morozov, A. Orlov, Nucl. Phys. B, 357 (1991), 565 | DOI | MR

[10] S. Kharchev, A. Marshakov, A. Mironov, A. Orlov, A. Zabrodin, Nucl. Phys. B, 366 (1991), 569 | DOI | MR

[11] T. Miwa, Proc. Japan Acad. A, 58 (1982), 9 | DOI | MR | Zbl

[12] S. Kharchev, A. Marshakov, A. Mironov, A. Morozov, Nucl. Phys. B, 397 (1993), 339 | DOI | MR

[13] S. Kharchev, A. Marshakov, A. Mironov, A. Morozov, A. Zabrodin, Phys. Lett. B, 275 (1992), 311 ; ; Nucl. Phys. B, 380 (1992), 181 ; hep-th/9111037hep-th/9201013 | DOI | MR | DOI | MR

[14] M. Kontsevich, Funkts. analiz i ego prilozh., 25:2 (1991), 50 ; M. Kontsevich, Commun. Math. Phys., 147 (1992), 1 | MR | Zbl | DOI | MR | Zbl

[15] M. Fukuma, H. Kawai, R. Nakayama, Int. J. Mod. Phys. A, 6 (1991), 1385 ; Commun. Math. Phys., 143 (1992), 371 | DOI | MR | DOI | MR | Zbl

[16] S. Kharchev, A. Marshakov, “Topological versus nontopological theories and $p$-$q$ duality in $c\le 1$ 2-d gravity models”, String Theory, Quantum Gravity and the Unification of the Fundamental Interactions, Proc. of Intern. Workshop on String Theory, Quantum Gravity and the Unification of Fundamental Interactions (Rome, Italy, 1993), eds. M. Bianchi, F. Fucito, E. Marinari, A. Sagnotti, World Scientific, Singapore, 1993 ; ; Int. J. Mod. Phys. A, 10 (1995), 1219 ; hep-th/9210072hep-th/9303100 | Zbl | DOI | MR | Zbl

[17] A. A. Migdal, Phys. Rep., 102 (1983), 199 | DOI

[18] F. David, Phys. Lett. B, 302 (1993), 403 ; hep-th/9212106 | DOI | MR

[19] G. Bonnet, F. David, B. Eynard, J. Phys. A, 33 (2000), 6739 ; cond-mat/0003324 | DOI | MR | Zbl

[20] R. Dijkgraaf, C. Vafa, Nucl. Phys. B, 644 (2002), 3 ; ; Nucl. Phys. B, 644 (2002), 21 ; ; A perturbative window into non-perturbative physics, hep-th/0206255hep-th/0207106hep-th/0208048 | DOI | MR | Zbl | DOI | MR | Zbl

[21] G. Felder, R. Riser, Nucl. Phys. B, 691 (2004), 251 ; hep-th/0401191 | DOI | MR | Zbl

[22] I. Krichever, Commun. Pure. Appl. Math., 47 (1992), 437 ; hep-th/9205110 | DOI | MR

[23] J. Fay, Theta Functions on Riemann Surfaces, Lect. Notes Math., 352, Springer, Berlin, 1973 | DOI | MR | Zbl

[24] B. de Vit, A. V. Marshakov, TMF, 129 (2001), 230 ; hep-th/0105289 | DOI

[25] L. Chekhov, A. Mironov, Phys. Lett. B, 552 (2003), 293 ; hep-th/0209085 | DOI | MR | Zbl

[26] L. Chekhov, A. Marshakov, A. Mironov, D. Vasiliev, Phys. Lett. B, 562 (2003), 323 ; hep-th/0301071 | DOI | MR | Zbl

[27] V. A. Kazakov, A. Marshakov, J. A. Minahan, K. Zarembo, JHEP, 05 (2004), 024 ; ; А. В. Маршаков, ТМФ, 142 (2005), 265 ; hep-th/0402207hep-th/0406056 | DOI | MR | DOI | MR | Zbl

[28] M. Mineev-Weinstein, P. Wiegmann, A. Zabrodin, Phys. Rev. Lett., 84 (2000), 5106 ; ; I. K. Kostov, I. Krichever, M. Mineev-Weinstein, P. B. Wiegmann, A. Zabrodin, “$\tau$-function for analytic curves”, Random Matrices and Their Applications, Based on Talks and Lectures from the Workshop (Berkeley, CA, USA, February 22–26, 1999), Math. Sci. Res. Inst. Publ., 40, eds. P. Bleher, A. Its, Cambridge Univ. Press, Cambridge, 2001, 285 ; ; A. Zabrodin, Matrix models and growth processes: From viscous flows to the quantum Hall effect, nlin.SI/0001007hep-th/0005259hep-th/0412219 | DOI | MR | MR

[29] V. A. Kazakov, A. Marshakov, J. Phys. A, 36 (2003), 3107 ; hep-th/0211236 | DOI | MR | Zbl

[30] B. Eynard, JHEP, 0301 (2003), 051 ; hep-th/0210047 | DOI | MR

[31] I. Krichever, A. Marshakov, A. Zabrodin, Commun. Math. Phys., 259 (2005), 1 ; hep-th/0309010 | DOI | MR | Zbl

[32] A. V. Marshakov, “Matrichnye modeli, kompleksnaya geometriya i integriruemye sistemy. II”, TMF, 147:3 (2006), 399 ; hep-th/0601214 | DOI | MR | Zbl

[33] A. Marshakov, P. Wiegmann, A. Zabrodin, Commun. Math. Phys., 227 (2002), 131 ; hep-th/0109048 | DOI | MR | Zbl

[34] L. A. Takhtajan, Lett. Math. Phys., 56 (2001), 181 ; hep-th/0102164 | DOI | MR | Zbl