Resonances and tunneling in a quantum wire
Teoretičeskaâ i matematičeskaâ fizika, Tome 147 (2006) no. 1, pp. 92-102 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a problem in mathematical scattering theory related to the ballistic conductance model. The model under investigation describes the charge propagation in a quantum wire. We assume that the charge carrier has a spin and take the Rashba spin-orbital interaction into account. We study the conductance resonances generated by the weak quantum-wire interaction with the quasistationary state of a parallel-connected quantum dot or with the tunneling through a series-connected quantum dot. Such a quantum dot is usually the control element. We present sufficient conditions for the spatial symmetry of the system to ensure that the quasistationary state of the quantum dot generates a conductance resonance. We assume that the conductance is related to the scattering matrix by the Landauer formula.
Keywords: resonance, quantum wire, ballistic conductance.
@article{TMF_2006_147_1_a6,
     author = {A. A. Arsen'ev},
     title = {Resonances and tunneling in a~quantum wire},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {92--102},
     year = {2006},
     volume = {147},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2006_147_1_a6/}
}
TY  - JOUR
AU  - A. A. Arsen'ev
TI  - Resonances and tunneling in a quantum wire
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2006
SP  - 92
EP  - 102
VL  - 147
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2006_147_1_a6/
LA  - ru
ID  - TMF_2006_147_1_a6
ER  - 
%0 Journal Article
%A A. A. Arsen'ev
%T Resonances and tunneling in a quantum wire
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2006
%P 92-102
%V 147
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2006_147_1_a6/
%G ru
%F TMF_2006_147_1_a6
A. A. Arsen'ev. Resonances and tunneling in a quantum wire. Teoretičeskaâ i matematičeskaâ fizika, Tome 147 (2006) no. 1, pp. 92-102. http://geodesic.mathdoc.fr/item/TMF_2006_147_1_a6/

[1] C. W. J. Beenaker, H. von Houten, Solid State Phys., 44 (1991), 1 ; cond-mat/0412664 | DOI

[2] B. Ricco, M. Ya. Azbel, Phys. Rev. B, 29 (1984), 1970 | DOI

[3] A. A. Arsenev, TMF, 136 (2003), 507 | DOI | MR | Zbl

[4] A. A. Arsenev, TMF, 141 (2004), 100 | DOI | MR

[5] Yu. A. Bychkov, E. I. Rashba, Pisma v ZhETF, 39 (1984), 66; Y. A. Bychkov, E. I. Rashba, J. Phys. C, 17 (1984), 6039 ; M. Governale, U. Zülicke, Rashba spin splitting in quantum wires, ; T. Koga, J. Nitta, H. Takayanagi, S. Datta, Phys. Rev. Lett., 88 (2002), 126601 cond-mat/0407036 | DOI | DOI