The theory of non-Abelian tensor fields: Gauge transformations and curvature
Teoretičeskaâ i matematičeskaâ fizika, Tome 147 (2006) no. 1, pp. 73-91 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We take one more step in formulating the theory of non-Abelian two-tensor fields: we find gauge transformation rules and the curvature tensor for them. To define the theory, we use the surface exponential. We derive a differential equation for the exponential and attempt to formulate its definition as a matrix model. We discuss applications of our construction to the Yang–Baxter equation for integrable models and to string field theory.
Keywords: quantum field theory, non-Abelian tensor fields.
@article{TMF_2006_147_1_a5,
     author = {E. T. Akhmedov},
     title = {The theory of {non-Abelian} tensor fields: {Gauge} transformations and curvature},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {73--91},
     year = {2006},
     volume = {147},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2006_147_1_a5/}
}
TY  - JOUR
AU  - E. T. Akhmedov
TI  - The theory of non-Abelian tensor fields: Gauge transformations and curvature
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2006
SP  - 73
EP  - 91
VL  - 147
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2006_147_1_a5/
LA  - ru
ID  - TMF_2006_147_1_a5
ER  - 
%0 Journal Article
%A E. T. Akhmedov
%T The theory of non-Abelian tensor fields: Gauge transformations and curvature
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2006
%P 73-91
%V 147
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2006_147_1_a5/
%G ru
%F TMF_2006_147_1_a5
E. T. Akhmedov. The theory of non-Abelian tensor fields: Gauge transformations and curvature. Teoretičeskaâ i matematičeskaâ fizika, Tome 147 (2006) no. 1, pp. 73-91. http://geodesic.mathdoc.fr/item/TMF_2006_147_1_a5/

[1] J. Baez, U. Schreiber, Higher gauge theory: 2-connections on 2-bundles, hep-th/0412325 | MR

[2] E. T. Akhmedov, TMF, 145:3 (2005), 321 ; hep-th/0503234 | DOI | MR | Zbl

[3] E. Verlinde, Nucl. Phys. B, 300 (1988), 360 | DOI | MR | Zbl

[4] M. Fukuma, S. Hosono, H. Kawai, Commun. Math. Phys., 161 (1994), 157 ; hep-th/9212154 | DOI | MR | Zbl

[5] E. T. Akhmedov, V. Dolotin, A. Morozov, Comment on the surface exponential for tensor fields, hep-th/0504160

[6] M. Kontsevich, Commun. Math. Phys., 147:1 (1992) | DOI | MR | Zbl

[7] V. V. Dolotin, Groups of flagged homotopies and higher gauge theory, math.gt/9904026 | MR

[8] T. A. Larsson, Gerbes, covariant derivatives, p-form lattice gauge theory, and the Yang–Baxter equation, math-ph/0205017

[9] A. P. Isaev, Nucl. Phys. B, 662 (2003), 461 ; hep-th/0303056 | DOI | MR | Zbl

[10] E. Witten, Nucl. Phys. B, 268 (1986), 253 | DOI | MR

[11] E. T. Akhmedov, Pisma v ZhETF, 80 (2004), 247 ; ; 81, 2005; ; R. Gopakumar, Phys. Rev. D, 70 (2004), 025009 ; ; 2004 ; ; From free fields to AdS. III, ; D. Gaiotto, L. Rastelli, A paradigm of open/closed duality: Liouville D-branes and the Kontsevich model, hep-th/0407018hep-th/0502174hep-th/0308184hep-th/0402063hep-th/0504229hep-th/0312196 | DOI | MR | DOI | MR | MR

[12] J. A. Minahan, K. Zarembo, JHEP, 0303 (2003), 013 ; hep-th/0212208 | DOI | MR