Bound states of a system of two fermions on a one-dimensional lattice
Teoretičeskaâ i matematičeskaâ fizika, Tome 147 (2006) no. 1, pp. 47-57
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the Hamiltonian of a system of two fermions on a one-dimensional integer lattice. We prove that the number of bound states $N(k)$ is a nondecreasing function of the total quasimomentum of the system $k\in[0,\pi]$. We describe the set of discontinuity points of $N(k)$ and evaluate the jump $N(k+0)-N(k)$ at the discontinuity points. We establish that the bound-state energy $z_n(k)$ increases as the total quasimomentum $k\in[0,\pi]$ increases.
Keywords: Hamiltonian, bound state, total quasimomentum, Schrödinger operator, eigenvalue, resonance, Birman–Schwinger principle.
@article{TMF_2006_147_1_a2,
     author = {Zh. I. Abdullaev},
     title = {Bound states of a~system of two fermions on a~one-dimensional lattice},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {47--57},
     year = {2006},
     volume = {147},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2006_147_1_a2/}
}
TY  - JOUR
AU  - Zh. I. Abdullaev
TI  - Bound states of a system of two fermions on a one-dimensional lattice
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2006
SP  - 47
EP  - 57
VL  - 147
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2006_147_1_a2/
LA  - ru
ID  - TMF_2006_147_1_a2
ER  - 
%0 Journal Article
%A Zh. I. Abdullaev
%T Bound states of a system of two fermions on a one-dimensional lattice
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2006
%P 47-57
%V 147
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2006_147_1_a2/
%G ru
%F TMF_2006_147_1_a2
Zh. I. Abdullaev. Bound states of a system of two fermions on a one-dimensional lattice. Teoretičeskaâ i matematičeskaâ fizika, Tome 147 (2006) no. 1, pp. 47-57. http://geodesic.mathdoc.fr/item/TMF_2006_147_1_a2/

[1] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki. T. IV. Analiz operatorov, Mir, M., 1982 | MR

[2] J. Rauch, J. Funct. Anal., 35 (1980), 304–315 | DOI | MR | Zbl

[3] B. Simon, Ann. Phys., 97 (1976), 279–288 | DOI | MR | Zbl

[4] M. Klaus, Ann. Phys., 108 (1977), 288–300 | DOI | MR | Zbl

[5] J. S. Howland, Pacific J. Math., 55 (1974), 157–176 | DOI | MR | Zbl

[6] Sh. S. Mamatov, R. A. Minlos, TMF, 79:2 (1989), 163–179 | MR

[7] R. A. Minlos, A. I. Mogilner, “Some problems concerning spectra of lattice models”, Schrödinger Operators: Standard and Nonstandard, eds. P. Exner, P. Seba, World Scientific, Singapore, 1989, 243–257 | MR

[8] T. Regge, Nuovo Cimento, 8 (1958), 671–679 | DOI | MR | Zbl

[9] P. Laks, R. S. Fillips, Teoriya rasseyaniya, Mir, M., 1971 | MR

[10] P. A. Faria da Viega, L. Ioriatti, M. O'Carrol, Phys. Rev. E, 66 (2002), 016130 ; D. C. Mattis, Rev. Mod. Phys., 58:2 (1986), 361–379 | DOI | MR | DOI | MR

[11] S. Albeverio, S. N. Lakaev, J. I. Abdullaev, On the spectral properties of two-particle discrete Schrödinger operators, Preprint, Germany, Universität Bonn, SFB 611, No 170, 2004

[12] J. I. Abdullaev, S. N. Lakaev, Adv. Sov. Math., 5 (1991), 1–37 | MR | Zbl