Quantum matrix algebras of the $GL(m|n)$ type: The structure and spectral parameterization of the characteristic subalgebra
Teoretičeskaâ i matematičeskaâ fizika, Tome 147 (2006) no. 1, pp. 14-46
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We continue the study of quantum matrix algebras of the $GL(m|n)$ type. We find three alternative forms of the Cayley–Hamilton identity; most importantly, this identity can be represented in a factored form. The factorization allows naturally dividing the spectrum of a quantum supermatrix into subsets of “even” and “odd” eigenvalues. This division leads to a parameterization of the characteristic subalgebra (the subalgebra of spectral invariants) in terms of supersymmetric polynomials in the eigenvalues of the quantum matrix. Our construction is based on two auxiliary results, which are independently interesting. First, we derive the multiplication rule for Schur functions $s_\lambda(M)$, that form a linear basis of the characteristic subalgebra of a Hecke-type quantum matrix algebra; the structure constants in this basis coincide with the Littlewood–Richardson coefficients. Second, we prove a number of bilinear relations in the graded ring $\Lambda$ of symmetric functions of countably many variables.
Keywords: quantum groups, Cayley–Hamilton theorem, Littlewood–Richardson rule.
Mots-clés : supermatrices
@article{TMF_2006_147_1_a1,
     author = {D. I. Gurevich and P. N. Pyatov and P. A. Saponov},
     title = {Quantum matrix algebras of the $GL(m|n)$ type: {The} structure and spectral parameterization of the characteristic subalgebra},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {14--46},
     year = {2006},
     volume = {147},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2006_147_1_a1/}
}
TY  - JOUR
AU  - D. I. Gurevich
AU  - P. N. Pyatov
AU  - P. A. Saponov
TI  - Quantum matrix algebras of the $GL(m|n)$ type: The structure and spectral parameterization of the characteristic subalgebra
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2006
SP  - 14
EP  - 46
VL  - 147
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2006_147_1_a1/
LA  - ru
ID  - TMF_2006_147_1_a1
ER  - 
%0 Journal Article
%A D. I. Gurevich
%A P. N. Pyatov
%A P. A. Saponov
%T Quantum matrix algebras of the $GL(m|n)$ type: The structure and spectral parameterization of the characteristic subalgebra
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2006
%P 14-46
%V 147
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2006_147_1_a1/
%G ru
%F TMF_2006_147_1_a1
D. I. Gurevich; P. N. Pyatov; P. A. Saponov. Quantum matrix algebras of the $GL(m|n)$ type: The structure and spectral parameterization of the characteristic subalgebra. Teoretičeskaâ i matematičeskaâ fizika, Tome 147 (2006) no. 1, pp. 14-46. http://geodesic.mathdoc.fr/item/TMF_2006_147_1_a1/

[1] D. I. Gurevich, P. N. Pyatov, P. A. Saponov, Algebra i analiz, 17:1 (2005), 160–182 ; math.QA/0412192 | MR | Zbl

[2] V. G. Drinfel'd, “Quantum groups”, Proc. of Int. Congress of Mathematicians, V. 1 (Berkeley, Calif., August 3–11, 1986), ed. A. M. Gleason, AMS, Providence, RI, 1987, 798–820 | MR

[3] N. Yu. Reshetikhin, L. A. Takhtadzhyan, L. D. Faddeev, Algebra i analiz, 1:1 (1989), 178–206 | MR

[4] P. P. Kulish, R. Sasaki, Prog. Theor. Phys., 89 (1993), 741–761 ; P. P. Kulish, E. K. Sklyanin, J. Phys. A, 25:22 (1992), 5963–5975 | DOI | MR | DOI | MR | Zbl

[5] L. Hlavaty, J. Math. Phys., 35 (1994), 2560–2569 | DOI | MR | Zbl

[6] H. Ewen, O. Ogievetsky, J. Wess, Lett. Math. Phys., 22:4 (1991), 297–305 ; A. P. Isaev, O. V. Ogievetsky, P. N. Pyatov, P. A. Saponov, “Characteristic polynomials for quantum matrices”, Proc. of Int. Conf. in Memory of V. I. Ogievetsky “Supersymmetries and Quantum symmetries” (Dubna, Russia, 1997), Lect. Notes in Phys., 524, eds. J. Wess, E. Ivanov, Springer, Berlin, 1998, 322–330 ; J. J. Zhang, J. Pure Appl. Algebra, 129:1 (1998), 101–109 | DOI | MR | Zbl | DOI | MR | DOI | MR | Zbl

[7] M. Nazarov, V. Tarasov, Publ. Res. Inst. Math. Sci., 30:3 (1994), 459–478 ; P. Pyatov, P. Saponov, J. Phys. A, 28 (1995), 4415–4421 | DOI | MR | Zbl | DOI | MR | Zbl

[8] D. Gurevich, P. Pyatov, P. Saponov, Lett. Math. Phys., 41 (1997), 255–264 | DOI | MR | Zbl

[9] A. P. Isaev, O. V. Ogievetsky, P. N. Pyatov, J. Phys. A, 32 (1999), L115–L121 | DOI | MR | Zbl

[10] A. Isaev, O. Ogievetsky, P. Pyatov, “Generalized Cayley–Hamilton–Newton identities”, Quantum groups and integrable systems (Prague, 1998) ; Czech. J. Phys., 48:11 (1998), 1369–1374 | MR | DOI | Zbl

[11] A. P. Isaev, O. V. Ogievetsky, P. N. Pyatov, “Cayley–Hamilton–Newton identities and quasitriangular Hopf algebras”, Proc. of Int. Workshop “Supersymmetries and Quantum Symmetries” (Dubna, Russia, July 27–31, 1999), eds. E. Ivanov, S. Krivonos, A. Pashnev, JINR, Dubna, 2000, 397–405 ; math.QA/9912197 | MR

[12] O. V. Ogievetsky, P. N. Pyatov, Orthogonal and symplectic quantum matrix algebras and Cayley–Hamilton theorem for them, Preprint MPIM 2005-53 () http://www.mpim-bonn.mpg.de/html/preprints/preprints.html

[13] I. Kantor, I. Trishin, Commun. Algebra, 22 (1994), 3679–3739 | DOI | MR | Zbl

[14] I. Kantor, I. Trishin, Commun. Algebra, 27 (1999), 233–259 | DOI | MR | Zbl

[15] P. D. Jarvis, H. S. Green, J. Math. Phys., 20 (1979), 2115–2122 | DOI | MR | Zbl

[16] M. D. Gould, J. R. Links, J. Math. Phys., 37:5 (1996), 2426–2456 | DOI | MR | Zbl

[17] I. G. Macdonald, Symmetric Functions and Hall Polynomials, Oxford Mathematical Monographs, Oxford Univ. Press, Oxford, 1998 | MR | Zbl

[18] O. Lipan, P. B. Wiegmann, A. Zabrodin, Mod. Phys. Lett. A, 12:19 (1997), 1369–1378 | DOI | MR | Zbl

[19] M. Kleber, J. Algebraic Combin., 13:2 (2001), 199–211 ; math.QA/9907177 | DOI | MR | Zbl

[20] A. Berele, A. Regev, Adv. Math., 64:2 (1987), 118–175 | DOI | MR | Zbl

[21] P. Pragacz, A. Thorup, Adv. Math., 95:1 (1992), 8–17 | DOI | MR | Zbl

[22] G. B. Gurevich, Osnovy teorii algebraicheskikh invariantov, Gostekhizdat, M.-L., 1948 | MR

[23] I. M. Trishin, Commun. Algebra, 27 (1999), 261–287 | DOI | MR | Zbl

[24] J. R. Stembridge, J. Algebra, 95 (1985), 439–444 | DOI | MR | Zbl

[25] F. A. Berezin, Funkts. analiz i ego prilozh., 10:3 (1976), 70–71 ; F. A. Berezin, Introduction to superanalysis, Edited and with a foreword by A. A. Kirillov, With an appendix by V. I. Ogievetsky, Mathematical Physics and Applied Mathematics, 9, D. Reidel Publishing Co., Dordrecht, 1987 | MR | Zbl | MR

[26] A. N. Sergeev, Represent. Theory, 3 (1999), 250–280 | DOI | MR | Zbl

[27] A. Ram, Proc. of London Math. Soc., 75 (1997), 99–133 ; math.RT/9511223 | DOI | MR | Zbl

[28] O. Ogievetsky, P. Pyatov, “Lecture on Hecke algebras”, Proc. Int. School “Symmetries and Integrable Systems” (Dubna, Russia, June 8–11, 1999), ed. S. Z. Pakulyak, JINR, Dubna, 2000, 39–88; Preprint MPIM 2001-40 () http://www.mpim-bonn.mpg.de/html/preprints/preprints.html

[29] A. N. Sergeev, Matem. sb., 123:3 (1984), 422–430 | MR

[30] E. V. Damaskinskii, P. P. Kulish, M. A. Sokolov, Zap. nauchn. sem. POMI, 224, 1995, 155–177 ; q-alg/9505001 | MR

[31] A. P. Isaev, Sov. J. Part. Nucl., 26 (1995), 501–526; MPIM Preprint 2004-132 () http://www.mpim-bonn.mpg.de/html/preprints/preprints.html

[32] D. I. Gurevich, Algebra i analiz, 2:4 (1990), 119–148 | MR | Zbl

[33] I. Tuba, H. Wenzl, J. Reine Angew. Math., 581 (2005), 31–69 ; math.QA/0301142 | DOI | MR | Zbl

[34] B. Sturmfels, Algorithms in Invariant Theory, Texts and Monographs in Symbolic Computation, Springer, Vienna, 1993 | DOI | MR | Zbl

[35] H. M. Khudaverdian, Th. Th. Voronov, Lett. Math. Phys., 74 (2003), 201–228 ; math.DG/0309188 | DOI | MR

[36] V. Lyubashenko, A. Sudbery, Duke Math. J., 90:1 (1997), 1–62 ; ; M. L. Nazarov, Lett. Math. Phys., 21 (1991), 123–131 hep-th/9311095 | DOI | MR | Zbl | DOI | MR | Zbl

[37] A. Mudrov, Quantum conjugacy classes of simple matrix groups, math.QA/0412538 | MR

[38] A. N. Kirillov, Zap. nauchn. semin. LOMI, 134, 1984, 169–189 ; А. Н. Кириллов, Н. Ю. Решетихин, Зап. научн. семин. ЛОМИ, 160, 1987, 211–221 | MR | Zbl | MR