Bäcklund correspondences for evolution equations in a multidimensional space
Teoretičeskaâ i matematičeskaâ fizika, Tome 147 (2006) no. 1, pp. 3-13 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Our objective is to develop a calculation technique that allows performing an effective algebro-geometric (group) analysis of partial differential equations with arbitrarily many independent variables. We completely describe an important class of multidimensional evolution equations admitting Bäcklund correspondences of a given form. In particular, this class is found to be rather wide, although it turns out to be somewhat richer in the one-dimensional case because the requirement that mixed derivatives be equal is absent.
Keywords: Bäcklund correspondences, evolution systems, differential constraints.
@article{TMF_2006_147_1_a0,
     author = {V. V. Zharinov},
     title = {B\"acklund correspondences for evolution equations in a~multidimensional space},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {3--13},
     year = {2006},
     volume = {147},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2006_147_1_a0/}
}
TY  - JOUR
AU  - V. V. Zharinov
TI  - Bäcklund correspondences for evolution equations in a multidimensional space
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2006
SP  - 3
EP  - 13
VL  - 147
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2006_147_1_a0/
LA  - ru
ID  - TMF_2006_147_1_a0
ER  - 
%0 Journal Article
%A V. V. Zharinov
%T Bäcklund correspondences for evolution equations in a multidimensional space
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2006
%P 3-13
%V 147
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2006_147_1_a0/
%G ru
%F TMF_2006_147_1_a0
V. V. Zharinov. Bäcklund correspondences for evolution equations in a multidimensional space. Teoretičeskaâ i matematičeskaâ fizika, Tome 147 (2006) no. 1, pp. 3-13. http://geodesic.mathdoc.fr/item/TMF_2006_147_1_a0/

[1] V. V. Zharinov, Matem. sb., 136(178):2 (1988), 274–291 | MR

[2] V. V. Zharinov, Lecture Notes on Geometrical Aspects of Partial Differential Equations, Ser. Sov. Fas Eur. Math., 9, World Scientific, Singapore, 1992 | MR | Zbl

[3] I. S. Krasil'shchik, A. M. Vinogradov, Acta. Appl. Math., 15 (1989), 161–209 | DOI | MR | Zbl

[4] L. V. Ovsyannikov, Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978 ; Н. Х. Ибрагимов, Группы преобразований в математической физике, Наука, М., 1983 ; П. Олвер, Приложения групп Ли к дифференциальным уравнениям, Мир, М., 1989 ; А. М. Виноградов, И. С. Красильщик (ред.), Симметрии и законы сохранения уравнений математической физики, Факториал, М., 1997; B. J. Cantwell, Introduction to Symmetry Analysis, Camb. Univ. Press, Cambridge, 2002 | MR | Zbl | MR | Zbl | MR | Zbl | MR | Zbl