The nature of the bufferness phenomenon in weakly dissipative systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 146 (2006) no. 3, pp. 447-466 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We propose a mechanism for accumulating attractors in finite-dimensional weakly dissipative systems. The essence of this mechanism is that if a Hamiltonian or a conservative system with one and a half or more degrees of freedom is perturbed by small additional terms ensuring that it is dissipative, then under certain conditions, the number of its attractors appearing in small neighborhoods of different elliptic equilibriums or cycles of the nonperturbed system can increase without bound as the perturbations tend to zero. We consider meaningful examples from mechanics and radio physics: models of the bouncing ball dynamics, Fermi accelerations, the linear oscillator with impacts, and the self-excited oscillator with a discrete sequence of $RLC$ circuits in the feedback circuit.
Keywords: attractors, periodic motions, bufferness phenomenon, mappings, relay systems.
@article{TMF_2006_146_3_a7,
     author = {A. Yu. Kolesov and N. Kh. Rozov},
     title = {The nature of the bufferness phenomenon in weakly dissipative systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {447--466},
     year = {2006},
     volume = {146},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2006_146_3_a7/}
}
TY  - JOUR
AU  - A. Yu. Kolesov
AU  - N. Kh. Rozov
TI  - The nature of the bufferness phenomenon in weakly dissipative systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2006
SP  - 447
EP  - 466
VL  - 146
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2006_146_3_a7/
LA  - ru
ID  - TMF_2006_146_3_a7
ER  - 
%0 Journal Article
%A A. Yu. Kolesov
%A N. Kh. Rozov
%T The nature of the bufferness phenomenon in weakly dissipative systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2006
%P 447-466
%V 146
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2006_146_3_a7/
%G ru
%F TMF_2006_146_3_a7
A. Yu. Kolesov; N. Kh. Rozov. The nature of the bufferness phenomenon in weakly dissipative systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 146 (2006) no. 3, pp. 447-466. http://geodesic.mathdoc.fr/item/TMF_2006_146_3_a7/

[1] A. A. Vitt, ZhTF, 4:1 (1934), 144–157

[2] A. Yu. Kolesov, N. Kh. Rozov, Trudy MIAN, 233, 2001, 153–207 | MR | Zbl

[3] A. Yu. Kolesov, E. F. Mischenko, N. Kh. Rozov, Trudy MIAN, 222, 1998, 1–193 ; А. Ю. Колесов, Н. Х. Розов, В. Г. Сушко, Фунд. и прикл. математика, 5:2 (1999), 437–473 ; А. Ю. Колесов, Е. Ф. Мищенко, Н. Х. Розов, УМН, 55:2(332) (2000), 95–120 ; А. Ю. Колесов, Н. Х. Розов, ПММ, 65:2 (2001), 183–198 | MR | MR | Zbl | DOI | MR | Zbl | MR | Zbl

[4] G. M. Zaslavskii, R. Z. Sagdeev, Vvedenie v nelineinuyu fiziku. Ot mayatnika do turbulentnosti i khaosa, Nauka, M., 1988 | MR

[5] G. M. Zaslavskii, Fizika khaosa v gamiltonovykh sistemakh, In-t kompyuternykh issledovanii, Moskva–Izhevsk, 2004

[6] N. K. Gavrilov, L. P. Shilnikov, Matem. sb., 88:4 (1972), 475–492 ; 90:1 (1973), 139–157 | MR | Zbl | MR

[7] I. M. Ovsyannikov, L. P. Shilnikov, Matem. sb., 130:4 (1986), 552–570 | MR

[8] I. M. Ovsyannikov, L. P. Shilnikov, Matem. sb., 182:7 (1991), 1043–1073 | MR

[9] S. E. Newhouse, Publ. Math. IHES, 50 (1979), 101–151 ; “Lectures on dynamical systems”, Dynamical Systems, C.I.M.E. Lectures (Bressanone, Italy, June, 1978), Progr. Math., 8, eds. J. Guckenheimer, J. Moser, S. E. Newhouse, Birkhäuser, Boston, 1980, 1–114 | DOI | MR | MR

[10] Dzh. Gukenkheimer, F. Kholms, Nelineinye kolebaniya, dinamicheskie sistemy i bifurkatsii vektornykh polei, In-t kompyuternykh issledovanii, Moskva-Izhevsk, 2002

[11] A. Yu. Kolesov, N. Kh. Rozov, Invariantnye tory nelineinykh volnovykh uravnenii, Fizmatlit, M., 2004 ; Е. Ф. Мищенко, В. А. Садовничий, А. Ю. Колесов, Н. Х. Розов, Автоволновые процессы в нелинейных средах с диффузией, Физматлит, М., 2005 | Zbl | MR

[12] A. Likhtenberg, M. Liberman, Regulyarnaya i stokhasticheskaya dinamika, Merkurii-Press, Cherepovets, 2000

[13] A. D. Morozov, T. N. Dragunov, Vizualizatsiya i analiz invariantnykh mnozhestv dinamicheskikh sistem, In-t kompyuternykh issledovanii, Moskva-Izhevsk, 2003

[14] Yu. S. Kolesov, “Matematicheskaya teoriya $RC$-avtogeneratorov s raspredelennymi parametrami v tsepi obratnoi svyazi”, Differentsialnye uravneniya i ikh primenenie, Vyp. 2, ed. M. Sapagovas, In-t fiziki i matematiki AN Lit. SSR, Vilnyus, 1971, 1–67 | MR

[15] A. N. Sharkovskii, Yu. L. Maistrenko, E. Yu. Romanenko, Raznostnye uravneniya i ikh prilozheniya, Naukova dumka, Kiev, 1986 | MR