Semicrystal with a singular potential in an accelerating electric field
Teoretičeskaâ i matematičeskaâ fizika, Tome 146 (2006) no. 3, pp. 410-428 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the Schrödinger equation describing the one-dimensional motion of a quantum electron in a periodic crystal placed in an accelerating electric field. We describe the asymptotic behavior of equation solutions at large values of the argument. Analyzing the obtained asymptotic expressions, we present rather loose conditions on the potential under which the spectrum of the corresponding operator is purely absolutely continuous and spans the entire real axis.
Keywords: Schrödinger equation, asymptotic solution, turning point, absolutely continuous spectrum.
Mots-clés : adiabatic solution
@article{TMF_2006_146_3_a4,
     author = {A. A. Pozharskii},
     title = {Semicrystal with a~singular potential in an accelerating electric field},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {410--428},
     year = {2006},
     volume = {146},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2006_146_3_a4/}
}
TY  - JOUR
AU  - A. A. Pozharskii
TI  - Semicrystal with a singular potential in an accelerating electric field
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2006
SP  - 410
EP  - 428
VL  - 146
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2006_146_3_a4/
LA  - ru
ID  - TMF_2006_146_3_a4
ER  - 
%0 Journal Article
%A A. A. Pozharskii
%T Semicrystal with a singular potential in an accelerating electric field
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2006
%P 410-428
%V 146
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2006_146_3_a4/
%G ru
%F TMF_2006_146_3_a4
A. A. Pozharskii. Semicrystal with a singular potential in an accelerating electric field. Teoretičeskaâ i matematičeskaâ fizika, Tome 146 (2006) no. 3, pp. 410-428. http://geodesic.mathdoc.fr/item/TMF_2006_146_3_a4/

[1] A. A. Pozharskii, Algebra i analiz, 16:3 (2004), 171–200 | MR | Zbl

[2] M. V. Fedoryuk, Asimptoticheskie metody dlya lineinykh obyknovennykh differentsialnykh uravnenii, Nauka, M., 1983 | MR | Zbl

[3] M. V. Buslaeva, Funkts. analiz i ego prilozh., 18:1 (1984), 65–66 ; В. С. Буслаев, ТМФ, 58 (1984), 233–243 ; В. С. Буслаев, Л. А. Дмитриева, ТМФ, 73 (1987), 430–442 ; Алгебра и анализ, 1:2 (1989), 1–29 ; J. Avron, L. Gunter, J. Zak, Solid State Commun., 16:2 (1975), 189–191 ; J. Avron, J. Zak, J. Math. Phys., 18:5 (1977), 918–921 ; A. Nenciu, G. Nenciu, J. Phys. A, 14:10 (1981), 2817–2827 | MR | Zbl | MR | Zbl | MR | Zbl | MR | Zbl | DOI | DOI | MR | DOI | MR

[4] A. A. Pozharskii, TMF, 123 (2000), 132–149 ; Алгебра и анализ, 14:1 (2002), 158–193 | DOI | MR | Zbl | MR | Zbl

[5] P. Exner, J. Math. Phys., 36 (1995), 4561–4570 | DOI | MR | Zbl

[6] V. S. Buslaev, “Kronig–Penney electron in a homogeneous electric field”, Differential Operators and Spectral Theory, M. Sh. Birman's 70th anniversary collection, Transl. Ser. 2. AMS Adv. Math. Sci., 189, eds. V. Buslaev, M. Solomyak, D. Yafaev, AMS, Providence, RI, 1999, 45–57 | MR

[7] F. Delyon, B. Simon, B. Souillard, Ann. Inst. H. Poincaré. Phys. Théor., 42:3 (1985), 283–309 | MR | Zbl

[8] D. J. Gilbert, D. B. Pearson, J. Math. Anal. Appl., 128 (1987), 30–56 | DOI | MR | Zbl