Nonstationary probabilities and time correlation functions for an asymmetric exclusion process
Teoretičeskaâ i matematičeskaâ fizika, Tome 146 (2006) no. 3, pp. 499-508

Voir la notice de l'article provenant de la source Math-Net.Ru

We give the complete solution of the master equation for a system of interacting particles with finite density. We obtain the solution using a new form of the Bethe ansatz for an asymmetric simple exclusion process on the ring. We first find the one-point time correlation function for the discrete version of the process.
Keywords: one-dimensional models of interacting particles, Bethe ansatz, conditional probability, correlation function.
@article{TMF_2006_146_3_a10,
     author = {M. V. Makhanova and V. B. Priezzhev},
     title = {Nonstationary probabilities and time correlation functions for an asymmetric exclusion process},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {499--508},
     publisher = {mathdoc},
     volume = {146},
     number = {3},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2006_146_3_a10/}
}
TY  - JOUR
AU  - M. V. Makhanova
AU  - V. B. Priezzhev
TI  - Nonstationary probabilities and time correlation functions for an asymmetric exclusion process
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2006
SP  - 499
EP  - 508
VL  - 146
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2006_146_3_a10/
LA  - ru
ID  - TMF_2006_146_3_a10
ER  - 
%0 Journal Article
%A M. V. Makhanova
%A V. B. Priezzhev
%T Nonstationary probabilities and time correlation functions for an asymmetric exclusion process
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2006
%P 499-508
%V 146
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2006_146_3_a10/
%G ru
%F TMF_2006_146_3_a10
M. V. Makhanova; V. B. Priezzhev. Nonstationary probabilities and time correlation functions for an asymmetric exclusion process. Teoretičeskaâ i matematičeskaâ fizika, Tome 146 (2006) no. 3, pp. 499-508. http://geodesic.mathdoc.fr/item/TMF_2006_146_3_a10/