Epsilon-expansion in the $N$-component $\varphi^4$ model
Teoretičeskaâ i matematičeskaâ fizika, Tome 146 (2006) no. 3, pp. 365-384
Voir la notice de l'article provenant de la source Math-Net.Ru
The formalism of projection Hamiltonians is applied to the $N$-component $O(N)$-invariant $\varphi^4$ model in the Euclidean and $p$-adic spaces. We use two versions of the $\varepsilon$-expansion (with $\varepsilon=4-d$ and $\varepsilon=\alpha-3d/2$ where $\alpha$ is the renormalization group parameter) and evaluate the critical indices $\nu$ and $\eta$ up to the second order of the perturbation theory. The results for the $(4-d)$-expansion then coincide with the known results obtained via the quantum-field renormalization-group methods. Our calculations give evidence that in dimension three, both expansions describe the same non-Gaussian fixed point of the renormalization group.
Keywords:
$\varepsilon$-expansion, renormalization group, Euclidean models, $p$-adic models, perturbation theory, critical indices.
@article{TMF_2006_146_3_a1,
author = {M. D. Missarov and R. G. Stepanov},
title = {Epsilon-expansion in the $N$-component $\varphi^4$ model},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {365--384},
publisher = {mathdoc},
volume = {146},
number = {3},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2006_146_3_a1/}
}
TY - JOUR AU - M. D. Missarov AU - R. G. Stepanov TI - Epsilon-expansion in the $N$-component $\varphi^4$ model JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2006 SP - 365 EP - 384 VL - 146 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2006_146_3_a1/ LA - ru ID - TMF_2006_146_3_a1 ER -
M. D. Missarov; R. G. Stepanov. Epsilon-expansion in the $N$-component $\varphi^4$ model. Teoretičeskaâ i matematičeskaâ fizika, Tome 146 (2006) no. 3, pp. 365-384. http://geodesic.mathdoc.fr/item/TMF_2006_146_3_a1/