Epsilon-expansion in the $N$-component $\varphi^4$ model
Teoretičeskaâ i matematičeskaâ fizika, Tome 146 (2006) no. 3, pp. 365-384 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The formalism of projection Hamiltonians is applied to the $N$-component $O(N)$-invariant $\varphi^4$ model in the Euclidean and $p$-adic spaces. We use two versions of the $\varepsilon$-expansion (with $\varepsilon=4-d$ and $\varepsilon=\alpha-3d/2$ where $\alpha$ is the renormalization group parameter) and evaluate the critical indices $\nu$ and $\eta$ up to the second order of the perturbation theory. The results for the $(4-d)$-expansion then coincide with the known results obtained via the quantum-field renormalization-group methods. Our calculations give evidence that in dimension three, both expansions describe the same non-Gaussian fixed point of the renormalization group.
Keywords: $\varepsilon$-expansion, renormalization group, Euclidean models, $p$-adic models, perturbation theory, critical indices.
@article{TMF_2006_146_3_a1,
     author = {M. D. Missarov and R. G. Stepanov},
     title = {Epsilon-expansion in the $N$-component $\varphi^4$ model},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {365--384},
     year = {2006},
     volume = {146},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2006_146_3_a1/}
}
TY  - JOUR
AU  - M. D. Missarov
AU  - R. G. Stepanov
TI  - Epsilon-expansion in the $N$-component $\varphi^4$ model
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2006
SP  - 365
EP  - 384
VL  - 146
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2006_146_3_a1/
LA  - ru
ID  - TMF_2006_146_3_a1
ER  - 
%0 Journal Article
%A M. D. Missarov
%A R. G. Stepanov
%T Epsilon-expansion in the $N$-component $\varphi^4$ model
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2006
%P 365-384
%V 146
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2006_146_3_a1/
%G ru
%F TMF_2006_146_3_a1
M. D. Missarov; R. G. Stepanov. Epsilon-expansion in the $N$-component $\varphi^4$ model. Teoretičeskaâ i matematičeskaâ fizika, Tome 146 (2006) no. 3, pp. 365-384. http://geodesic.mathdoc.fr/item/TMF_2006_146_3_a1/

[1] J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, Clarendon Press, Oxford, 1996 | MR

[2] K. Vilson, Dzh. Kogut, Renormalizatsionnaya gruppa i $\varepsilon$-razlozhenie, Mir, M., 1975

[3] P. M. Bleher, M. D. Missarov, Commun. Math. Phys., 74 (1980), 235–272 | DOI | MR

[4] M. D. Missarov, J. Stat. Phys., 38:5/6 (1985), 851–860 | DOI | MR

[5] P. M. Blekher, M. D. Missarov, TMF, 74:2 (1988), 203–209 | MR

[6] E. Yu. Lerner, M. D. Missarov, J. Stat. Phys., 76:3/4 (1994), 805–817 ; М. Д. Миссаров, ТМФ, 109:1 (1996), 3–16 ; 117:3 (1998), 471–488 ; M. D. Missarov, “Renormalization group solution of fermionic Dyson model”, Asymptotic Combinatorics with Application to Mathematical Physics, Proc. NATO Advanced Study Institute (St. Petersburg, Russia, July 9–22, 2001), NATO Sci. Ser. Math. Phys. Chem., 77, eds. V. A. Malyshev, A. M. Vershik, Kluwer, Dordrecht, 2002, 151–166 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | MR | Zbl

[7] M. D. Missarov, R. G. Stepanov, TMF, 139:2 (2004), 268–275 | DOI | MR | Zbl

[8] E. Yu. Lerner, M. D. Missarov, TMF, 78:2 (1989), 248–257 | MR

[9] V. S. Vladimirov, I. V. Volovich, E. I. Zelenov, $p$-Adicheskii analiz i matematicheskaya fizika, Nauka, M., 1994 | MR

[10] M. Moshe, J. Zinn-Justin, Phys. Rep., 385 (2003), 69–228 ; И. Я. Арефьева, Зап. науч. семин. ЛОМИ, 77, 1978, 3–23 | DOI | MR | Zbl | MR

[11] I. Ya. Aref'eva, E. R. Nissimov, S. J. Pacheva, Commun. Math. Phys., 71 (1980), 213–246 ; А. Н. Васильев, М. Ю. Налимов, ТМФ, 55:2 (1983), 163–176 | DOI | MR | MR

[12] M. D. Missarov, “Renormalization group and renormalization theory in $p$-adic and adelic scalar models”, Dynamical Systems and Statistical Mechanics, From the Seminar on Statistical Physics (Moscow State Univ., USSR), Adv. Sov. Math., 3, ed. Ya. G. Sinai, AMS, Providence, R.I., 1991, 143–164 ; E. Yu. Lerner, Commun. Math. Phys., 121:1 (1989), 35–48 | MR | DOI | MR | Zbl