Keywords: Euler integral transformation, Schlesinger transformation
@article{TMF_2006_146_3_a0,
author = {D. P. Novikov},
title = {Integral transformation of solutions for {a~Fuchsian-class} equation corresponding to the {Okamoto} transformation of the {Painlev\'e~VI} equation},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {355--364},
year = {2006},
volume = {146},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2006_146_3_a0/}
}
TY - JOUR AU - D. P. Novikov TI - Integral transformation of solutions for a Fuchsian-class equation corresponding to the Okamoto transformation of the Painlevé VI equation JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2006 SP - 355 EP - 364 VL - 146 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2006_146_3_a0/ LA - ru ID - TMF_2006_146_3_a0 ER -
%0 Journal Article %A D. P. Novikov %T Integral transformation of solutions for a Fuchsian-class equation corresponding to the Okamoto transformation of the Painlevé VI equation %J Teoretičeskaâ i matematičeskaâ fizika %D 2006 %P 355-364 %V 146 %N 3 %U http://geodesic.mathdoc.fr/item/TMF_2006_146_3_a0/ %G ru %F TMF_2006_146_3_a0
D. P. Novikov. Integral transformation of solutions for a Fuchsian-class equation corresponding to the Okamoto transformation of the Painlevé VI equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 146 (2006) no. 3, pp. 355-364. http://geodesic.mathdoc.fr/item/TMF_2006_146_3_a0/
[1] R. Fuchs, C. R. Acad. Sci. Paris, 141 (1905), 555–558; Math. Ann., 63 (1907), 301–321 | DOI | MR | Zbl
[2] V. A. Dobrovolskii, Ocherki razvitiya analiticheskoi teorii differentsialnykh uravnenii, Vischa shkola, Kiev, 1974 | Zbl
[3] V. V. Golubev, Lektsii po analiticheskoi teorii differentsialnykh uravnenii, GITTL, M.-L., 1950 | MR
[4] A. V. Kitaev, Dessins d'enfants, their deformations and algebraic the sixth Painlevé and Gauss hypergeometric functions, nlin.SI/0309078 | MR
[5] A. M. Borodin, Izomonodromnye deformatsii i uravneniya Penleve v zadachakh sluchaino-matrichnogo tipa, Preprint POMI No 04-2005; M. Jimbo, T. Miwa, Physica D, 2 (1981), 407–448 | DOI | MR | Zbl
[6] K. Okamoto, Proc. Japan Acad. Ser. A. Math. Sci., 56:6 (1980), 264–268 | DOI | MR | Zbl
[7] K. Okamoto, Ann. Mat. Pura Appl. Ser. IV, 146 (1987), 337–381 | DOI | MR | Zbl
[8] M. Noumi, Y. Yamada, “A new Lax pair for the sixth Painlevé equation associated with $\widehat{\mathfrak{so}}(8)$”, Microlocal Analysis and Complex Fourier Analysis, eds. T. Kawai, K. Fujita, World Scientific, River Edge, NJ, 2002, 238–252 ; math-ph/0203029 | DOI | MR | Zbl
[9] R. Conte, M. Musette, J. Phys. A, 34 (2001), 10507–10522 ; R. Conte, C.R. Acad. Sci. Paris. Ser. I. Math., 332:6 (2001), 501–504 ; math.CA/0103165 | DOI | MR | Zbl | DOI | MR | Zbl
[10] M. Mazzocco, J. London Math. Soc. Ser. 2, 70 (2004), 405–419 ; “Painleve sixth equation as isomonodromic deformations equation of an irregular system”, The Kowalevski Property, CRM Proc. Lecture Notes, 32, ed. V. Kuznetsov, AMS, Providence, RI, 2002, 219–238 | DOI | MR | Zbl | DOI | MR | Zbl
[11] M. Inaba, K. Iwasaki, M. H. Saito, Int. Math. Res. Notices, 2004:1 (2004), 1–30 ; math.AG/0309341 | DOI | MR | Zbl
[12] L. Eiler, Integralnoe ischislenie, t. 2, Fizmatlit, M., 1957
[13] K. Iwasaki, H. Kimura, S. Shimomura, M. Yoshida, From Gauss to Painlevé, a Modern Theory of Special Functions, Aspects of Math., E16, Vieweg–Verlag, Wiesbaden, 1991 | DOI | MR | Zbl
[14] A. Ya. Kazakov, TMF, 116:3 (1998), 323–335 | DOI | MR | Zbl
[15] A. Ya. Kazakov, S. Yu. Slavyanov, TMF, 107:3 (1996), 388–396 | DOI | MR | Zbl
[16] M. Jimbo, Publ. RIMS Kyoto Univ., 18 (1982), 1137–1161 | DOI | MR | Zbl
[17] B. Dubrovin, M. Mazzocco, Invent. Math., 141 (2000), 55–147 ; Monodromy of certain Painlevé-VI transcendents and reflection groups, math.AG/9806056 | DOI | MR | Zbl
[18] P. Boalch, Proc. London Math. Soc. Ser. 3, 90 (2005), 167–208 | DOI | MR | Zbl
[19] B. Dubrovin, M. Mazzocco, Canonical structure and symmetries of the Schlesinger equations, math.DG/0311261 | MR