Integral transformation of solutions for a Fuchsian-class equation corresponding to the Okamoto transformation of the Painlevé VI equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 146 (2006) no. 3, pp. 355-364 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We show that under the Euler integral transformation with the kernel $(x-z)^{-\alpha}$, some solutions of the Fuchs equations (the original pair for the Painlevé VI equation) pass into solutions of a system of the same form with the parameters changed according to the Okamoto transformation.
Mots-clés : Painlevé VI equation, Heun equation, Okamoto transformation.
Keywords: Euler integral transformation, Schlesinger transformation
@article{TMF_2006_146_3_a0,
     author = {D. P. Novikov},
     title = {Integral transformation of solutions for {a~Fuchsian-class} equation corresponding to the {Okamoto} transformation of the {Painlev\'e~VI} equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {355--364},
     year = {2006},
     volume = {146},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2006_146_3_a0/}
}
TY  - JOUR
AU  - D. P. Novikov
TI  - Integral transformation of solutions for a Fuchsian-class equation corresponding to the Okamoto transformation of the Painlevé VI equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2006
SP  - 355
EP  - 364
VL  - 146
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2006_146_3_a0/
LA  - ru
ID  - TMF_2006_146_3_a0
ER  - 
%0 Journal Article
%A D. P. Novikov
%T Integral transformation of solutions for a Fuchsian-class equation corresponding to the Okamoto transformation of the Painlevé VI equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2006
%P 355-364
%V 146
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2006_146_3_a0/
%G ru
%F TMF_2006_146_3_a0
D. P. Novikov. Integral transformation of solutions for a Fuchsian-class equation corresponding to the Okamoto transformation of the Painlevé VI equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 146 (2006) no. 3, pp. 355-364. http://geodesic.mathdoc.fr/item/TMF_2006_146_3_a0/

[1] R. Fuchs, C. R. Acad. Sci. Paris, 141 (1905), 555–558; Math. Ann., 63 (1907), 301–321 | DOI | MR | Zbl

[2] V. A. Dobrovolskii, Ocherki razvitiya analiticheskoi teorii differentsialnykh uravnenii, Vischa shkola, Kiev, 1974 | Zbl

[3] V. V. Golubev, Lektsii po analiticheskoi teorii differentsialnykh uravnenii, GITTL, M.-L., 1950 | MR

[4] A. V. Kitaev, Dessins d'enfants, their deformations and algebraic the sixth Painlevé and Gauss hypergeometric functions, nlin.SI/0309078 | MR

[5] A. M. Borodin, Izomonodromnye deformatsii i uravneniya Penleve v zadachakh sluchaino-matrichnogo tipa, Preprint POMI No 04-2005; M. Jimbo, T. Miwa, Physica D, 2 (1981), 407–448 | DOI | MR | Zbl

[6] K. Okamoto, Proc. Japan Acad. Ser. A. Math. Sci., 56:6 (1980), 264–268 | DOI | MR | Zbl

[7] K. Okamoto, Ann. Mat. Pura Appl. Ser. IV, 146 (1987), 337–381 | DOI | MR | Zbl

[8] M. Noumi, Y. Yamada, “A new Lax pair for the sixth Painlevé equation associated with $\widehat{\mathfrak{so}}(8)$”, Microlocal Analysis and Complex Fourier Analysis, eds. T. Kawai, K. Fujita, World Scientific, River Edge, NJ, 2002, 238–252 ; math-ph/0203029 | DOI | MR | Zbl

[9] R. Conte, M. Musette, J. Phys. A, 34 (2001), 10507–10522 ; R. Conte, C.R. Acad. Sci. Paris. Ser. I. Math., 332:6 (2001), 501–504 ; math.CA/0103165 | DOI | MR | Zbl | DOI | MR | Zbl

[10] M. Mazzocco, J. London Math. Soc. Ser. 2, 70 (2004), 405–419 ; “Painleve sixth equation as isomonodromic deformations equation of an irregular system”, The Kowalevski Property, CRM Proc. Lecture Notes, 32, ed. V. Kuznetsov, AMS, Providence, RI, 2002, 219–238 | DOI | MR | Zbl | DOI | MR | Zbl

[11] M. Inaba, K. Iwasaki, M. H. Saito, Int. Math. Res. Notices, 2004:1 (2004), 1–30 ; math.AG/0309341 | DOI | MR | Zbl

[12] L. Eiler, Integralnoe ischislenie, t. 2, Fizmatlit, M., 1957

[13] K. Iwasaki, H. Kimura, S. Shimomura, M. Yoshida, From Gauss to Painlevé, a Modern Theory of Special Functions, Aspects of Math., E16, Vieweg–Verlag, Wiesbaden, 1991 | DOI | MR | Zbl

[14] A. Ya. Kazakov, TMF, 116:3 (1998), 323–335 | DOI | MR | Zbl

[15] A. Ya. Kazakov, S. Yu. Slavyanov, TMF, 107:3 (1996), 388–396 | DOI | MR | Zbl

[16] M. Jimbo, Publ. RIMS Kyoto Univ., 18 (1982), 1137–1161 | DOI | MR | Zbl

[17] B. Dubrovin, M. Mazzocco, Invent. Math., 141 (2000), 55–147 ; Monodromy of certain Painlevé-VI transcendents and reflection groups, math.AG/9806056 | DOI | MR | Zbl

[18] P. Boalch, Proc. London Math. Soc. Ser. 3, 90 (2005), 167–208 | DOI | MR | Zbl

[19] B. Dubrovin, M. Mazzocco, Canonical structure and symmetries of the Schlesinger equations, math.DG/0311261 | MR