General Theory of Acoustic Wave Propagation in Liquids and Gases
Teoretičeskaâ i matematičeskaâ fizika, Tome 146 (2006) no. 2, pp. 340-352 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the propagation of small-amplitude acoustic waves in liquids and gases and use the hydrodynamic equations to obtain an exact dispersion equation. This equation in dimensionless variables contains only two material constants $p$ and $q$. We solve the dispersion equation, obtaining an exact solution that holds for all values of the parameters and all frequencies up to hypersonic, and thus analytically establish exactly how the speed of sound $c$, the wave vector $k$, and the damping factor $x$ depend on the frequency $\omega$ and the dimensionless material constants $p$ and $q$. Studying the behavior of the solution in the sonic and ultrasonic frequency bands for $\omega<10^7$ с$^{-1}$ results in an expression for the damping factor, which differs from the Kirchhoff formula. The speed of sound $c$ and the wave vector $k$ are shown to have finite nonzero values for all hypersonic frequencies. At the same time, there exists a certain maximum frequency value, $\omega_{\max}\approx10^{11}$$10^{12}$ с$^{-1}$, at which the damping factor $x$ is zero. This frequency determines the boundary of the applicability domain for the hydrodynamic equations.
Keywords: hydrodynamics, sound, relaxation theory.
Mots-clés : dispersion equation
@article{TMF_2006_146_2_a8,
     author = {G. A. Martynov},
     title = {General {Theory} of {Acoustic} {Wave} {Propagation} in {Liquids} and {Gases}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {340--352},
     year = {2006},
     volume = {146},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2006_146_2_a8/}
}
TY  - JOUR
AU  - G. A. Martynov
TI  - General Theory of Acoustic Wave Propagation in Liquids and Gases
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2006
SP  - 340
EP  - 352
VL  - 146
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2006_146_2_a8/
LA  - ru
ID  - TMF_2006_146_2_a8
ER  - 
%0 Journal Article
%A G. A. Martynov
%T General Theory of Acoustic Wave Propagation in Liquids and Gases
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2006
%P 340-352
%V 146
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2006_146_2_a8/
%G ru
%F TMF_2006_146_2_a8
G. A. Martynov. General Theory of Acoustic Wave Propagation in Liquids and Gases. Teoretičeskaâ i matematičeskaâ fizika, Tome 146 (2006) no. 2, pp. 340-352. http://geodesic.mathdoc.fr/item/TMF_2006_146_2_a8/

[1] L. D. Landau, E. M. Lifshits, Mekhanika sploshnykh sred, Gostekhizdat, M., 1954 | MR

[2] C. Truesdell, J. Ration. Mech. Analys., 2:3 (1953), 643–650 | MR

[3] D. Sette, “Izuchenie prostykh zhidkostei ultrazvukovymi metodami”, Eksperimentalnye issledovaniya. Fizika prostykh zhidkostei, ed. G. Temperli, Dzh. Roulinson, Dzh. Rashbruk, Mir, M., 1973, 151–205

[4] G. A. Martynov, TMF, 133:1 (2002), 121–131 ; 134:2 (2003), 325–336 | DOI | MR | Zbl | DOI | MR | Zbl

[5] G. A. Martynov, TMF, 134:3 (2003), 487–500 | DOI | MR | Zbl

[6] G. A. Martynov, TMF, 129:1 (2001), 140–152 | DOI | MR | Zbl

[7] S. Chepmen, T. Kauling, Matematicheskaya teoriya neodnorodnykh gazov, IL, M., 1960 ; В. М. Жданов, В. И. Ролдугин, УФН, 168:4 (1998), 407–438 ; Ю. Л. Климонтович, Статистическая теория открытых систем. Т. 1, Янус, М., 1995 | MR | DOI

[8] L. D. Landau, E. M. Lifshits, Statisticheskaya fizika, Ch. 1, Fizmatgiz, M., 1976 | MR

[9] M. A. Anisimov, Kriticheskie yavleniya v zhidkostyakh i zhidkikh kristallakh, Nauka, M., 1987