Exchange-Correlation Potential in the Density Functional Method
Teoretičeskaâ i matematičeskaâ fizika, Tome 146 (2006) no. 2, pp. 329-339
Cet article a éte moissonné depuis la source Math-Net.Ru
We analyze the equation for the highest occupied state in a system of noninteracting electrons in the density functional method. More rigorously than in the currently known publications, we show that the eigenvalues of this equation determine the ionization energy. In this case, the expression for the exchange-correlation potential is essentially refined.
Keywords:
many-electron system, density functional, exchange-correlation potential, highest occupied state, one-electron Schrodinger equation.
@article{TMF_2006_146_2_a7,
author = {L. P. Ginzburg},
title = {Exchange-Correlation {Potential} in the {Density} {Functional} {Method}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {329--339},
year = {2006},
volume = {146},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2006_146_2_a7/}
}
L. P. Ginzburg. Exchange-Correlation Potential in the Density Functional Method. Teoretičeskaâ i matematičeskaâ fizika, Tome 146 (2006) no. 2, pp. 329-339. http://geodesic.mathdoc.fr/item/TMF_2006_146_2_a7/
[1] V. Kon, UFN, 172:3 (2002), 336–348 | DOI
[2] C.-O. Almbladh, U. von Burth, Phys. Rev. B, 31:6 (1985), 3231–3244 | DOI
[3] M. Levy, J. P. Perdew, V. Sahni, Phys. Rev. A, 30:5 (1984), 2745–2748 ; G. Hunter, “The exact Schrödinger equation for the electron density”, Density Matrices and Density Functionals, Proc. of the A. John Coleman Symposium, eds. R. Erdahl, V. H. Smith, Reidel Publ., Jr. Dordrecht, 1987, 583–596 | DOI | DOI
[4] L. P. Ginzburg, TMF, 121:3 (1999), 450–463 | DOI | Zbl
[5] V. Sahni, Phys. Rev. A, 55:3 (1997), 1846–1856 | DOI