Renormalization-Group Transformation in a $2n$-Component Fermionic Hierarchical Model
Teoretičeskaâ i matematičeskaâ fizika, Tome 146 (2006) no. 2, pp. 251-266 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the $2N$-component fermionic model on a hierarchical lattice and give explicit formulas for the renormalization-group transformation in the space of coefficients that determine a Grassmann-valued density of the free measure. We evaluate the inverse renormalization-group transformation. The de.nition of the renormalization-group fixed points reduces to a solution of a system of algebraic equations. We investigate solutions of this system for $N=1,2,3$. For $\alpha=1$, we prove an analogue of the central limit theorem for fermionic $2N$-component fields. We discover an interesting relation between renormalization-group transformations in bosonic and fermionic hierarchical models and show that one of these transformations is obtained from the other by replacing $N$ with $-N$.
Keywords: renormalization group, $N$-component fermionic fields, hierarchical models.
@article{TMF_2006_146_2_a3,
     author = {R. G. Stepanov},
     title = {Renormalization-Group {Transformation} in a~$2n${-Component} {Fermionic} {Hierarchical} {Model}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {251--266},
     year = {2006},
     volume = {146},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2006_146_2_a3/}
}
TY  - JOUR
AU  - R. G. Stepanov
TI  - Renormalization-Group Transformation in a $2n$-Component Fermionic Hierarchical Model
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2006
SP  - 251
EP  - 266
VL  - 146
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2006_146_2_a3/
LA  - ru
ID  - TMF_2006_146_2_a3
ER  - 
%0 Journal Article
%A R. G. Stepanov
%T Renormalization-Group Transformation in a $2n$-Component Fermionic Hierarchical Model
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2006
%P 251-266
%V 146
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2006_146_2_a3/
%G ru
%F TMF_2006_146_2_a3
R. G. Stepanov. Renormalization-Group Transformation in a $2n$-Component Fermionic Hierarchical Model. Teoretičeskaâ i matematičeskaâ fizika, Tome 146 (2006) no. 2, pp. 251-266. http://geodesic.mathdoc.fr/item/TMF_2006_146_2_a3/

[1] E. Yu. Lerner, M. D. Missarov, J. Stat. Phys., 76:3/4 (1994), 805–817 | DOI | MR | Zbl

[2] M. D. Missarov, TMF, 109:1 (1996), 3–16 ; 117:3 (1998), 471–488 ; 118:1 (1999), 40–50 ; Р. З. Даутов, М. Д. Миссаров, ТМФ, 126:2 (2001), 238–246 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | Zbl

[3] E. Yu. Lerner, M. D. Missarov, TMF, 101:2 (1994), 282–293 | MR | Zbl

[4] E. Yu. Lerner, M. D. Missarov, TMF, 78:2 (1989), 248–257 ; В. С. Владимиров, И. В. Волович, Е. И. Зеленов, $p$-Адический анализ и математическая физика, Наука, М., 1994 | MR | MR | Zbl

[5] V. V. Prasolov, Mnogochleny, MTsNMO, M., 1999

[6] M. D. Missarov, R. G. Stepanov, TMF, 139:2 (2004), 268–275 | DOI | MR | Zbl