Renormalization-Group Transformation in a~$2n$-Component Fermionic Hierarchical Model
Teoretičeskaâ i matematičeskaâ fizika, Tome 146 (2006) no. 2, pp. 251-266
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the $2N$-component fermionic model on a hierarchical lattice and give explicit formulas for the renormalization-group transformation in the space of coefficients that determine a Grassmann-valued density of the free measure. We evaluate the inverse renormalization-group transformation. The de.nition of the renormalization-group fixed points reduces to a solution of a system of algebraic equations. We investigate solutions of this system for $N=1,2,3$. For $\alpha=1$, we prove an analogue of the central limit theorem for fermionic $2N$-component fields. We discover an interesting relation between renormalization-group transformations in bosonic and fermionic hierarchical models and show that one of these transformations is obtained from the other by replacing $N$ with $-N$.
Keywords:
renormalization group, $N$-component fermionic fields, hierarchical models.
@article{TMF_2006_146_2_a3,
author = {R. G. Stepanov},
title = {Renormalization-Group {Transformation} in a~$2n${-Component} {Fermionic} {Hierarchical} {Model}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {251--266},
publisher = {mathdoc},
volume = {146},
number = {2},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2006_146_2_a3/}
}
TY - JOUR AU - R. G. Stepanov TI - Renormalization-Group Transformation in a~$2n$-Component Fermionic Hierarchical Model JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2006 SP - 251 EP - 266 VL - 146 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2006_146_2_a3/ LA - ru ID - TMF_2006_146_2_a3 ER -
R. G. Stepanov. Renormalization-Group Transformation in a~$2n$-Component Fermionic Hierarchical Model. Teoretičeskaâ i matematičeskaâ fizika, Tome 146 (2006) no. 2, pp. 251-266. http://geodesic.mathdoc.fr/item/TMF_2006_146_2_a3/