Keywords: tau function, hypergeometric function, duality.
@article{TMF_2006_146_2_a2,
author = {A. Yu. Orlov},
title = {Hypergeometric {Functions} as {Infinite-Soliton} {Tau} {Functions}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {222--250},
year = {2006},
volume = {146},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2006_146_2_a2/}
}
A. Yu. Orlov. Hypergeometric Functions as Infinite-Soliton Tau Functions. Teoretičeskaâ i matematičeskaâ fizika, Tome 146 (2006) no. 2, pp. 222-250. http://geodesic.mathdoc.fr/item/TMF_2006_146_2_a2/
[1] A. Yu. Orlov, D. M. Scherbin, Fermionic representation for basic hypergeometric functions related to Schur polynomials, ; Physica. D, 152–153 (2001), 51 nlin.SI/0001001 | DOI | MR | Zbl
[2] A. Yu. Orlov, D. M. Scherbin, J. Phys. A, 34 (2001), 2295 | DOI | MR | Zbl
[3] K. I. Gross, D. S. Richards, Trans. Amer. Math. Soc., 301 (1987), 781 ; Н. Я. Виленкин, А. У. Климык, “Представления групп Ли и специальные функции”, Итоги науки и техники. Сер. Современные проблемы математики. Фундаментальные направления, 59, ред. А. А. Кириллов, ВИНИТИ, М., 1990 | DOI | MR | Zbl | MR
[4] A. Yu. Orlov, Acta Appl. Math., 86:1–2 (2005), 131 ; nlin.SI/0207030 | DOI | MR | Zbl
[5] A. Yu. Orlov, Tau functions and matrix integrals, math-ph/0210012
[6] Dzh. Kharnad, A. Yu. Orlov, TMF, 137:3 (2003), 375 ; nlin.SI/0211051 | DOI | MR
[7] A. Yu. Orlov, Int. J. Mod. Phys. A, 19 (2004), 276 ; nlin.SI/0209063 | DOI | MR | Zbl
[8] N. A. Nekrasov, Adv. Theor.Math. Phys., 7 (2004), 831 ; hep-th/0206161 | DOI | MR
[9] A. S. Losev, A. Marshakov, N. A. Nekrasov, Small instantons, little strings and free fermions, Preprint ITEP-TH-1-03, ITEP, Moscow, 2003 ; hep-th/0302191 | MR
[10] A. Okounkov, Math. Res. lett., 7 (2000), 447 ; math.AG/0004128 | DOI | MR | Zbl
[11] A. Okounkov, R. Pandharipande, The equivariant Gromov–Witten theory of $P^1$, math.AG/0207233 | MR
[12] W.-P. Li, Z. Qin, W. Wang, Int. Math. Res. Notices, 40 (2004), 2085 ; math.AG/0302211 | MR | Zbl
[13] T. Nakatsu, K. Takasaki, S. Tsujimaru, Nucl. Phys. B, 443 (1995), 155 ; ; T. Takasaki, Commun. Math. Phys., 181 (1996), 131 ; hep-th/9501038hep-th/9506089 | DOI | MR | Zbl | DOI | MR | Zbl
[14] A. Yu. Orlov, Hypergeometric tau functions $\tau({\mathbf t},T,{\mathbf t}^*)$ as $\infty$-soliton tau function in $T$ variables, nonlin.SI/0305001
[15] V. E. Zakharov, A. B. Shabat, Funkts. analiz i ego prilozh., 8:3 (1974), 43 | MR | Zbl
[16] M. Jimbo, T. Miwa, Publ. RIMS Kyoto Univ., 19 (1983), 943 | DOI | MR | Zbl
[17] A. V. Mikhailov, Pisma v ZhETF, 30 (1979), 443
[18] K. Ueno, K. Takasaki, Adv. Stud. Pure Math., 4 (1984), 1 | MR | Zbl
[19] V. E. Zakharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, Teoriya solitonov. Metod obratnoi zadachi, Nauka, M., 1980 | MR
[20] K. Takasaki, Adv. Stud. Pure Math., 4 (1984), 139 | MR | Zbl
[21] A. Yu. Orlov, D. M. Scherbin, TMF, 128:1 (2001), 84 | DOI | MR | Zbl
[22] I. G. Macdonald, Symmetric Functions and Hall Polynomials, Clarendon Press, Oxford, 1995 | MR | Zbl
[23] A. Mironov, Seiberg–Witten theory and duality in integrable systems, Preprint FIAN-TD-29-00, FIAN, Moscow, 2003 ; ITEP-TH-63-00, ITEP, Moscow, 2000; hep-th/0011093 | MR
[24] Yu. Yu. Berest, I. M. Loutsenko, Commun. Math. Phys., 190 (1997), 113–132 ; ; I. M. Loutsenko, V. Spiridonov, J. Statist. Phys., 99 (2000), 751 ; solv-int/9704012cond-mat/9909308 | DOI | MR | Zbl | DOI | MR | Zbl
[25] L.-L. Chau, O. Zaboronsky, Commun. Math. Phys., 196 (1998), 203 ; hep-th/9711091 | DOI | MR | Zbl
[26] L.-L. Chau, Y. Yu, Phys. Lett. A, 167 (1992), 452 | DOI | MR
[27] M. Mineev-Weinstein, P. Wiegmann, A. Zabrodin, Phys. Rev. Lett., 84 (2000), 5106 | DOI
[28] A. V. Zabrodin, TMF, 129:2 (2001), 239 | DOI | MR | Zbl
[29] C. Itzykson, J. B. Zuber, J. Math. Phys., 21 (1980), 411 | DOI | MR | Zbl
[30] E. Date, M. Jimbo, M. Kashiwara, T. Miwa, “Transformation groups for soliton equations”, Non-linear Integrable Systems – Classical Theory and Quantum Theory, Proc. RIMS. Symp. (Kyoto, Japan, May 13–16, 1981), eds. M. Jimbo, T. Miwa, World Scientific, Singapore, 1983, 39 | MR
[31] A. B. Migdal, ZhETF, 69 (1975), 810
[32] K. Saaidi, M. Khorrami, Eur. Phys. J. C, 23 (2002), 757 ; hep-th/0304204 | DOI | MR
[33] D. Lebedev, A. Orlov, S. Pakulyak, A. Zabrodin, Phys. Lett. A, 160 (1991), 166 | DOI | MR
[34] Y. V. Fyodorov, H.-J. Sommers, J. Phys. A, 36 (2003), 3303 ; nlin.CD/0207051 | DOI | MR | Zbl
[35] M. Adler, P. van Moerbeke, Adv. Math., 181 (2004), 190 ; math.CO/0110281 | DOI | MR | Zbl
[36] N. Ya. Vilenkin, A. U. Klimyk, Representation of Lie Groups and Special Functions, Recent Advances, Kluwer Academic Publishers, 1995 ; S. C. Milne, “Summation theorems for basic hypergeometric series of Schur function argument”, Progress in Approximation Theory, Proc. Int. Conf. on Approximation Theory (Tampa, South Florida, USA, March 19–22, 1990), Comput. Math., 19, eds. A. A. Gonchar, E. B. Saff, Springer, N. Y., 1992, 51 | MR | MR | Zbl