Hypergeometric Functions as Infinite-Soliton Tau Functions
Teoretičeskaâ i matematičeskaâ fizika, Tome 146 (2006) no. 2, pp. 222-250 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is known that resonant multisoliton solutions depend on higher times and a set of parameters (integrals of motion). We show that soliton tau functions of the Toda lattice (and of the multicomponent Toda lattice) are tau functions of a dual hierarchy, where the higher times and the parameters (integrals of motion) exchange roles. The multisoliton solutions turn out to be rational solutions of the dual hierarchy, and the infinite-soliton tau functions turn out to be hypergeometric-type tau functions of the dual hierarchy. The variables in the dual hierarchies exchange roles. Soliton momenta are related to the Frobenius coordinates of partitions in the decomposition of rational solutions with respect to Schur functions. As an example, we consider partition functions of matrix models: their perturbation series is, on one hand, a hypergeometric tau function and, on the other hand, can be interpreted as an infinite-soliton solution.
Mots-clés : solitons, rational solutions
Keywords: tau function, hypergeometric function, duality.
@article{TMF_2006_146_2_a2,
     author = {A. Yu. Orlov},
     title = {Hypergeometric {Functions} as {Infinite-Soliton} {Tau} {Functions}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {222--250},
     year = {2006},
     volume = {146},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2006_146_2_a2/}
}
TY  - JOUR
AU  - A. Yu. Orlov
TI  - Hypergeometric Functions as Infinite-Soliton Tau Functions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2006
SP  - 222
EP  - 250
VL  - 146
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2006_146_2_a2/
LA  - ru
ID  - TMF_2006_146_2_a2
ER  - 
%0 Journal Article
%A A. Yu. Orlov
%T Hypergeometric Functions as Infinite-Soliton Tau Functions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2006
%P 222-250
%V 146
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2006_146_2_a2/
%G ru
%F TMF_2006_146_2_a2
A. Yu. Orlov. Hypergeometric Functions as Infinite-Soliton Tau Functions. Teoretičeskaâ i matematičeskaâ fizika, Tome 146 (2006) no. 2, pp. 222-250. http://geodesic.mathdoc.fr/item/TMF_2006_146_2_a2/

[1] A. Yu. Orlov, D. M. Scherbin, Fermionic representation for basic hypergeometric functions related to Schur polynomials, ; Physica. D, 152–153 (2001), 51 nlin.SI/0001001 | DOI | MR | Zbl

[2] A. Yu. Orlov, D. M. Scherbin, J. Phys. A, 34 (2001), 2295 | DOI | MR | Zbl

[3] K. I. Gross, D. S. Richards, Trans. Amer. Math. Soc., 301 (1987), 781 ; Н. Я. Виленкин, А. У. Климык, “Представления групп Ли и специальные функции”, Итоги науки и техники. Сер. Современные проблемы математики. Фундаментальные направления, 59, ред. А. А. Кириллов, ВИНИТИ, М., 1990 | DOI | MR | Zbl | MR

[4] A. Yu. Orlov, Acta Appl. Math., 86:1–2 (2005), 131 ; nlin.SI/0207030 | DOI | MR | Zbl

[5] A. Yu. Orlov, Tau functions and matrix integrals, math-ph/0210012

[6] Dzh. Kharnad, A. Yu. Orlov, TMF, 137:3 (2003), 375 ; nlin.SI/0211051 | DOI | MR

[7] A. Yu. Orlov, Int. J. Mod. Phys. A, 19 (2004), 276 ; nlin.SI/0209063 | DOI | MR | Zbl

[8] N. A. Nekrasov, Adv. Theor.Math. Phys., 7 (2004), 831 ; hep-th/0206161 | DOI | MR

[9] A. S. Losev, A. Marshakov, N. A. Nekrasov, Small instantons, little strings and free fermions, Preprint ITEP-TH-1-03, ITEP, Moscow, 2003 ; hep-th/0302191 | MR

[10] A. Okounkov, Math. Res. lett., 7 (2000), 447 ; math.AG/0004128 | DOI | MR | Zbl

[11] A. Okounkov, R. Pandharipande, The equivariant Gromov–Witten theory of $P^1$, math.AG/0207233 | MR

[12] W.-P. Li, Z. Qin, W. Wang, Int. Math. Res. Notices, 40 (2004), 2085 ; math.AG/0302211 | MR | Zbl

[13] T. Nakatsu, K. Takasaki, S. Tsujimaru, Nucl. Phys. B, 443 (1995), 155 ; ; T. Takasaki, Commun. Math. Phys., 181 (1996), 131 ; hep-th/9501038hep-th/9506089 | DOI | MR | Zbl | DOI | MR | Zbl

[14] A. Yu. Orlov, Hypergeometric tau functions $\tau({\mathbf t},T,{\mathbf t}^*)$ as $\infty$-soliton tau function in $T$ variables, nonlin.SI/0305001

[15] V. E. Zakharov, A. B. Shabat, Funkts. analiz i ego prilozh., 8:3 (1974), 43 | MR | Zbl

[16] M. Jimbo, T. Miwa, Publ. RIMS Kyoto Univ., 19 (1983), 943 | DOI | MR | Zbl

[17] A. V. Mikhailov, Pisma v ZhETF, 30 (1979), 443

[18] K. Ueno, K. Takasaki, Adv. Stud. Pure Math., 4 (1984), 1 | MR | Zbl

[19] V. E. Zakharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, Teoriya solitonov. Metod obratnoi zadachi, Nauka, M., 1980 | MR

[20] K. Takasaki, Adv. Stud. Pure Math., 4 (1984), 139 | MR | Zbl

[21] A. Yu. Orlov, D. M. Scherbin, TMF, 128:1 (2001), 84 | DOI | MR | Zbl

[22] I. G. Macdonald, Symmetric Functions and Hall Polynomials, Clarendon Press, Oxford, 1995 | MR | Zbl

[23] A. Mironov, Seiberg–Witten theory and duality in integrable systems, Preprint FIAN-TD-29-00, FIAN, Moscow, 2003 ; ITEP-TH-63-00, ITEP, Moscow, 2000; hep-th/0011093 | MR

[24] Yu. Yu. Berest, I. M. Loutsenko, Commun. Math. Phys., 190 (1997), 113–132 ; ; I. M. Loutsenko, V. Spiridonov, J. Statist. Phys., 99 (2000), 751 ; solv-int/9704012cond-mat/9909308 | DOI | MR | Zbl | DOI | MR | Zbl

[25] L.-L. Chau, O. Zaboronsky, Commun. Math. Phys., 196 (1998), 203 ; hep-th/9711091 | DOI | MR | Zbl

[26] L.-L. Chau, Y. Yu, Phys. Lett. A, 167 (1992), 452 | DOI | MR

[27] M. Mineev-Weinstein, P. Wiegmann, A. Zabrodin, Phys. Rev. Lett., 84 (2000), 5106 | DOI

[28] A. V. Zabrodin, TMF, 129:2 (2001), 239 | DOI | MR | Zbl

[29] C. Itzykson, J. B. Zuber, J. Math. Phys., 21 (1980), 411 | DOI | MR | Zbl

[30] E. Date, M. Jimbo, M. Kashiwara, T. Miwa, “Transformation groups for soliton equations”, Non-linear Integrable Systems – Classical Theory and Quantum Theory, Proc. RIMS. Symp. (Kyoto, Japan, May 13–16, 1981), eds. M. Jimbo, T. Miwa, World Scientific, Singapore, 1983, 39 | MR

[31] A. B. Migdal, ZhETF, 69 (1975), 810

[32] K. Saaidi, M. Khorrami, Eur. Phys. J. C, 23 (2002), 757 ; hep-th/0304204 | DOI | MR

[33] D. Lebedev, A. Orlov, S. Pakulyak, A. Zabrodin, Phys. Lett. A, 160 (1991), 166 | DOI | MR

[34] Y. V. Fyodorov, H.-J. Sommers, J. Phys. A, 36 (2003), 3303 ; nlin.CD/0207051 | DOI | MR | Zbl

[35] M. Adler, P. van Moerbeke, Adv. Math., 181 (2004), 190 ; math.CO/0110281 | DOI | MR | Zbl

[36] N. Ya. Vilenkin, A. U. Klimyk, Representation of Lie Groups and Special Functions, Recent Advances, Kluwer Academic Publishers, 1995 ; S. C. Milne, “Summation theorems for basic hypergeometric series of Schur function argument”, Progress in Approximation Theory, Proc. Int. Conf. on Approximation Theory (Tampa, South Florida, USA, March 19–22, 1990), Comput. Math., 19, eds. A. A. Gonchar, E. B. Saff, Springer, N. Y., 1992, 51 | MR | MR | Zbl